FCCCSR_Glu: a semi-supervised learning model based on FCCCSR algorithm for prediction of glutarylation sites

Author:

Ning Qiao1,Qi Zedong1,Wang Yue1,Deng Ansheng1,Chen Chen2

Affiliation:

1. Department of Information Science and Technology, Dalian Maritime University , Lingshui Street, 116026, Dalian, China

2. Naval Architecture and Ocean Engineering college, Dalian Maritime University , Lingshui Street, 116026, Dalian, China

Abstract

Abstract Glutarylation is a post-translational modification which plays an irreplaceable role in various functions of the cell. Therefore, it is very important to accurately identify the glutarylation substrates and its corresponding glutarylation sites. In recent years, many computational methods of glutarylation sites have emerged one after another, but there are still many limitations, among which noisy data and the class imbalance problem caused by the uncertainty of non-glutarylation sites are great challenges. In this study, we propose a new semi-supervised learning algorithm, named FCCCSR, to identify reliable non-glutarylation lysine sites from unlabeled samples as negative samples. FCCCSR first finds core objects from positive samples according to reverse nearest neighbor information, and then clusters core objects based on natural neighbor structure. Finally, reliable negative samples are selected according to clustering result. With FCCCSR algorithm, we propose a new method named FCCCSR_Glu for glutarylation sites identification. In this study, multi-view features are extracted and fused to describe peptides, including amino acid composition, BLOSUM62, amino acid factors and composition of k-spaced amino acid pairs. Then, reliable negative samples selected by FCCCSR and positive samples are combined to establish models and XGBoost optimized by differential evolution algorithm is used as the classifier. On the independent testing dataset, FCCCSR_Glu achieves 85.18%, 98.36%, 94.31% and 0.8651 in sensitivity, specificity, accuracy and Matthew’s Correlation Coefficient, respectively, which is superior to state-of-the-art methods in predicting glutarylation sites. Therefore, FCCCSR_Glu can be a useful tool for glutarylation sites prediction and FCCCSR algorithm can effectively select reliable negative samples from unlabeled samples. The data and code are available on https://github.com/xbbxhbc/FCCCSR_Glu.git

Funder

Fundamental Research Funds for the Central Universities

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3