cSurvival: a web resource for biomarker interactions in cancer outcomes and in cell lines

Author:

Cheng Xuanjin123,Liu Yongxing123,Wang Jiahe123,Chen Yujie123,Robertson Andrew Gordon4,Zhang Xuekui5ORCID,Jones Steven J M34,Taubert Stefan123ORCID

Affiliation:

1. Centre for Molecular Medicine and Therapeutics, The University of British Columbia, Vancouver, British Columbia, Canada

2. British Columbia Children’s Hospital Research Institute, Vancouver, British Columbia, Canada

3. Department of Medical Genetics, The University of British Columbia, Vancouver, British Columbia, Canada

4. Canada’s Michael Smith Genome Sciences Centre at BC Cancer Agency, Vancouver, British Columbia, Canada

5. Department of Mathematics and Statistics, University of Victoria, Victoria, British Columbia, Canada

Abstract

Abstract Survival analysis is a technique for identifying prognostic biomarkers and genetic vulnerabilities in cancer studies. Large-scale consortium-based projects have profiled >11 000 adult and >4000 pediatric tumor cases with clinical outcomes and multiomics approaches. This provides a resource for investigating molecular-level cancer etiologies using clinical correlations. Although cancers often arise from multiple genetic vulnerabilities and have deregulated gene sets (GSs), existing survival analysis protocols can report only on individual genes. Additionally, there is no systematic method to connect clinical outcomes with experimental (cell line) data. To address these gaps, we developed cSurvival (https://tau.cmmt.ubc.ca/cSurvival). cSurvival provides a user-adjustable analytical pipeline with a curated, integrated database and offers three main advances: (i) joint analysis with two genomic predictors to identify interacting biomarkers, including new algorithms to identify optimal cutoffs for two continuous predictors; (ii) survival analysis not only at the gene, but also the GS level; and (iii) integration of clinical and experimental cell line studies to generate synergistic biological insights. To demonstrate these advances, we report three case studies. We confirmed findings of autophagy-dependent survival in colorectal cancers and of synergistic negative effects between high expression of SLC7A11 and SLC2A1 on outcomes in several cancers. We further used cSurvival to identify high expression of the Nrf2-antioxidant response element pathway as a main indicator for lung cancer prognosis and for cellular resistance to oxidative stress-inducing drugs. Altogether, these analyses demonstrate cSurvival’s ability to support biomarker prognosis and interaction analysis via gene- and GS-level approaches and to integrate clinical and experimental biomedical studies.

Funder

Canadian Institutes of Health Research

Natural Sciences and Engineering Research Council of Canada

Canada Research Chair

Canada Research Chairs Program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3