Predicting the function of rice proteins through Multi-instance Multi-label Learning based on multiple features fusion

Author:

Liu Jing1,Tang Xinghua1,Cui Shuanglong1,Guan Xiao2

Affiliation:

1. Information Engineering College, Shanghai Maritime University, 201306 Shanghai, China

2. School of Health Science and Engineering, University of Shanghai for Science and Technology, 200093 Shanghai, China

Abstract

Abstract There are a large number of unannotated proteins with unknown functions in rice, which are difficult to be verified by biological experiments. Therefore, computational method is one of the mainstream methods for rice proteins function prediction. Two representative rice proteins, indica protein and japonica protein, are selected as the experimental dataset. In this paper, two feature extraction methods (the residue couple model method and the pseudo amino acid composition method) and the Principal Component Analysis method are combined to design protein descriptive features. Moreover, based on the state-of-the-art MIML algorithm EnMIMLNN, a novel MIML learning framework MK-EnMIMLNN is proposed. And the MK-EnMIMLNN algorithm is designed by learning multiple kernel fusion function neural network. The experimental results show that the hybrid feature extraction method is better than the single feature extraction method. More importantly, the MK-EnMIMLNN algorithm is superior to most classic MIML learning algorithms, which proves the effectiveness of the MK-EnMIMLNN algorithm in rice proteins function prediction.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference42 articles.

1. A large-scale evaluation of computational protein function prediction;Radivojac;Nat Methods,2013

2. Multi-instance multi-label learning;Zhou;Artificial Intelligence,2012

3. Multi-instance multi-label learning with application to scene classification;Zhou;In Advances in neural information processing systems,2006

4. Drosophila gene expression pattern annotation through multi-instance multi-label learning;Li;IEEE/ACM Trans Comput Biol Bioinform,2011

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3