Open tools for quantitative anonymization of tabular phenotype data: literature review

Author:

Haber Anna C1,Sax Ulrich23,Prasser Fabian1ORCID,

Affiliation:

1. Health Data Science Center, Berlin Institute of Health at Charité - Universitätsmedizin Berlin , Berlin, Germany

2. Department of Medical Informatics, University Medical Center Göttingen , Göttingen, Germany

3. Campus-Institute Data Science, Georg-August-University Göttingen

Abstract

Abstract Precision medicine relies on molecular and systems biology methods as well as bidirectional association studies of phenotypes and (high-throughput) genomic data. However, the integrated use of such data often faces obstacles, especially in regards to data protection. An important prerequisite for research data processing is usually informed consent. But collecting consent is not always feasible, in particular when data are to be analyzed retrospectively. For phenotype data, anonymization, i.e. the altering of data in such a way that individuals cannot be identified, can provide an alternative. Several re-identification attacks have shown that this is a complex task and that simply removing directly identifying attributes such as names is usually not enough. More formal approaches are needed that use mathematical models to quantify risks and guide their reduction. Due to the complexity of these techniques, it is challenging and not advisable to implement them from scratch. Open software libraries and tools can provide a robust alternative. However, also the range of available anonymization tools is heterogeneous and obtaining an overview of their strengths and weaknesses is difficult due to the complexity of the problem space. We therefore performed a systematic review of open anonymization tools for structured phenotype data described in the literature between 1990 and 2021. Through a two-step eligibility assessment process, we selected 13 tools for an in-depth analysis. By comparing the supported anonymization techniques and further aspects, such as maturity, we derive recommendations for tools to use for anonymizing phenotype datasets with different properties.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3