BatchDTA: implicit batch alignment enhances deep learning-based drug–target affinity estimation

Author:

Luo Hongyu1,Xiang Yingfei1,Fang Xiaomin1,Lin Wei1,Wang Fan1,Wu Hua2,Wang Haifeng2

Affiliation:

1. PaddleHelix team, Baidu Inc. , 518000, Shenzhen, China

2. Baidu Inc. , 100000, Beijing, China

Abstract

Abstract Candidate compounds with high binding affinities toward a target protein are likely to be developed as drugs. Deep neural networks (DNNs) have attracted increasing attention for drug–target affinity (DTA) estimation owning to their efficiency. However, the negative impact of batch effects caused by measure metrics, system technologies and other assay information is seldom discussed when training a DNN model for DTA. Suffering from the data deviation caused by batch effects, the DNN models can only be trained on a small amount of ‘clean’ data. Thus, it is challenging for them to provide precise and consistent estimations. We design a batch-sensitive training framework, namely BatchDTA, to train the DNN models. BatchDTA implicitly aligns multiple batches toward the same protein through learning the orders of candidate compounds with respect to the batches, alleviating the impact of the batch effects on the DNN models. Extensive experiments demonstrate that BatchDTA facilitates four mainstream DNN models to enhance the ability and robustness on multiple DTA datasets (BindingDB, Davis and KIBA). The average concordance index of the DNN models achieves a relative improvement of 4.0%. The case study reveals that BatchDTA can successfully learn the ranking orders of the compounds from multiple batches. In addition, BatchDTA can also be applied to the fused data collected from multiple sources to achieve further improvement.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3