RNAdegformer: accurate prediction of mRNA degradation at nucleotide resolution with deep learning

Author:

He Shujun1,Gao Baizhen1,Sabnis Rushant1,Sun Qing1

Affiliation:

1. Texas A&M University Department of Chemical Engineering, , 100 Spence St, 77843, Texas , United States

Abstract

Abstract Messenger RNA-based therapeutics have shown tremendous potential, as demonstrated by the rapid development of messenger RNA based vaccines for COVID-19. Nevertheless, distribution of mRNA vaccines worldwide has been hampered by mRNA’s inherent thermal instability due to in-line hydrolysis, a chemical degradation reaction. Therefore, predicting and understanding RNA degradation is a crucial and urgent task. Here we present RNAdegformer, an effective and interpretable model architecture that excels in predicting RNA degradation. RNAdegformer processes RNA sequences with self-attention and convolutions, two deep learning techniques that have proved dominant in the fields of computer vision and natural language processing, while utilizing biophysical features of RNA. We demonstrate that RNAdegformer outperforms previous best methods at predicting degradation properties at nucleotide resolution for COVID-19 mRNA vaccines. RNAdegformer predictions also exhibit improved correlation with RNA in vitro half-life compared with previous best methods. Additionally, we showcase how direct visualization of self-attention maps assists informed decision-making. Further, our model reveals important features in determining mRNA degradation rates via leave-one-feature-out analysis.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3