Line graph attention networks for predicting disease-associated Piwi-interacting RNAs

Author:

Zheng Kai12,Zhang Xin-Lu,Wang Lei13ORCID,You Zhu-Hong3,Zhan Zhao-Hui4,Li Hao-Yuan2

Affiliation:

1. College of Information Science and Engineering, Zaozhuang University , Shandong 277100, China

2. Hunan Provincial Key Lab on Bioinformatics, School of Computer Science and Engineering, Central South University , Changsha, 410083, China

3. Big Data and Intelligent Computing Research Center, Guangxi Academy of Sciences , Nanning 530007, China

4. Department of Computer Science, City University of Hong Kong , Kowloon, Hong Kong

Abstract

AbstractPIWI proteins and Piwi-Interacting RNAs (piRNAs) are commonly detected in human cancers, especially in germline and somatic tissues, and correlate with poorer clinical outcomes, suggesting that they play a functional role in cancer. As the problem of combinatorial explosions between ncRNA and disease exposes gradually, new bioinformatics methods for large-scale identification and prioritization of potential associations are therefore of interest. However, in the real world, the network of interactions between molecules is enormously intricate and noisy, which poses a problem for efficient graph mining. Line graphs can extend many heterogeneous networks to replace dichotomous networks. In this study, we present a new graph neural network framework, line graph attention networks (LGAT). And we apply it to predict PiRNA disease association (GAPDA). In the experiment, GAPDA performs excellently in 5-fold cross-validation with an AUC of 0.9038. Not only that, it still has superior performance compared with methods based on collaborative filtering and attribute features. The experimental results show that GAPDA ensures the prospect of the graph neural network on such problems and can be an excellent supplement for future biomedical research.

Funder

Fundamental Research Funds for the Central Universities of Central South University

Qingtan scholar talent project of Zaozhuang University

National Natural Science Foundation of China

Science and Technology Innovation 2030-‘Brain Science and Brain-like Research’ Major Project

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3