Studying protein–protein interaction through side-chain modeling method OPUS-Mut

Author:

Xu Gang123ORCID,Wang Yilin4,Wang Qinghua5,Ma Jianpeng123

Affiliation:

1. Multiscale Research Institute of Complex Systems, Fudan University , Shanghai 200433 , China

2. Zhangjiang Fudan International Innovation Center, Fudan University , Shanghai 201210 , China

3. Shanghai AI Laboratory , Shanghai 200030 , China

4. Georgetown Preparatory School , North Bethesda, MD 20852 , USA

5. Center for Biomolecular Innovation, Harcam Biomedicines , Shanghai , China

Abstract

Abstract Protein side chains are vitally important to many biological processes such as protein–protein interaction. In this study, we evaluate the performance of our previous released side-chain modeling method OPUS-Mut, together with some other methods, on three oligomer datasets, CASP14 (11), CAMEO-Homo (65) and CAMEO-Hetero (21). The results show that OPUS-Mut outperforms other methods measured by all residues or by the interfacial residues. We also demonstrate our method on evaluating protein–protein docking pose on a dataset Oligomer-Dock (75) created using the top 10 predictions from ZDOCK 3.0.2. Our scoring function correctly identifies the native pose as the top-1 in 45 out of 75 targets. Different from traditional scoring functions, our method is based on the overall side-chain packing favorableness in accordance with the local packing environment. It emphasizes the significance of side chains and provides a new and effective scoring term for studying protein–protein interaction.

Funder

Shanghai Municipal Science and Technology Major Project

ZJLab

National Key Research and Development Program of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3