Balancing the transcriptome: leveraging sample similarity to improve measures of gene specificity

Author:

Bondhus Leroy123,Varma Roshni123,Hernandez Yenifer123,Arboleda Valerie A12345ORCID

Affiliation:

1. Department of Human Genetics, David Geffen School of Medicine , UCLA, Los Angeles, CA 90095

2. Department of Pathology and Laboratory Medicine, David Geffen School of Medicine , UCLA, Los Angeles, CA 90095

3. Department of Computational Medicine, David Geffen School of Medicine , UCLA, Los Angeles, CA 90095

4. Molecular Biology Institute, UCLA , Los Angeles, CA 90095

5. Jonsson Comprehensive Cancer Center, UCLA , Los Angeles, CA, 90095

Abstract

Abstract The spatial and temporal domain of a gene’s expression can range from ubiquitous to highly specific. Quantifying the degree to which this expression is unique to a specific tissue or developmental timepoint can provide insight into the etiology of genetic diseases. However, quantifying specificity remains challenging as measures of specificity are sensitive to similarity between samples in the sample set. For example, in the Gene-Tissue Expression project (GTEx), brain subregions are overrepresented at 13 of 54 (24%) unique tissues sampled. In this dataset, existing specificity measures have a decreased ability to identify genes specific to the brain relative to other organs. To solve this problem, we leverage sample similarity information to weight samples such that overrepresented tissues do not have an outsized effect on specificity estimates. We test this reweighting procedure on 4 measures of specificity, Z-score, Tau, Tsi and Gini, in the GTEx data and in single cell datasets for zebrafish and mouse. For all of these measures, incorporating sample similarity information to weight samples results in greater stability of sets of genes called as specific and decreases the overall variance in the change of specificity estimates as sample sets become more unbalanced. Furthermore, the genes with the largest improvement in their specificity estimate’s stability are those with functions related to the overrepresented sample types. Our results demonstrate that incorporating similarity information improves specificity estimates’ stability to the choice of the sample set used to define the transcriptome, providing more robust and reproducible measures of specificity for downstream analyses.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3