NetTDP: permutation-based true discovery proportions for differential co-expression network analysis

Author:

Cai Menglan1,Vesely Anna2,Chen Xu3,Li Limin1,Goeman Jelle J3

Affiliation:

1. School of Mathematics and Statistics, Xi’an Jiaotong University , Xianning West, 710049, Shaanxi, China

2. Department of Statistical Sciences, University of Padova , Italy

3. Department of Biomedical Data Sciences, Leiden University Medical Center , Postbus 9600, 2300 RC Leiden, The Netherlands

Abstract

Abstract Existing methods for differential network analysis could only infer whether two networks of interest have differences between two groups of samples, but could not quantify and localize network differences. In this work, a novel method, permutation-based Network True Discovery Proportions (NetTDP), is proposed to quantify the number of edges (correlations) or nodes (genes) for which the co-expression networks are different. In the NetTDP method, we propose an edge-level statistic and a node-level statistic, and detect true discoveries of edges and nodes in the sense of differential co-expression network, respectively, by the permutation-based sumSome method. Furthermore, the NetTDP method could further localize the differences by inferring the TDPs for edge or gene subsets of interest, which can be selected post hoc. Our NetTDP method allows inference on data-driven modules or biology-driven gene sets, and remains valid even when these sub-networks are optimized using the same data. Experimental results on both simulation data sets and five real data sets show the effectiveness of the proposed method in inferring the quantification and localization of differential co-expression networks. The R code is available at https://github.com/LiminLi-xjtu/NetTDP.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3