A generic parallel framework for inferring large-scale gene regulatory networks from expression profiles: application to Alzheimer’s disease network

Author:

Sebastian Softya1,Roy Swarup1,Kalita Jugal2

Affiliation:

1. Network Reconstruction and Analysis (NetRA) Lab, Department of Computer Applications, Sikkim University , 6th Mile, Gangtok, 737102, Sikkim , India

2. Department of Computer Science, University of Colorado at Colorado Springs , CO, 80918 USA

Abstract

Abstract The inference of large-scale gene regulatory networks is essential for understanding comprehensive interactions among genes. Most existing methods are limited to reconstructing networks with a few hundred nodes. Therefore, parallel computing paradigms must be leveraged to construct large networks. We propose a generic parallel framework that enables any existing method, without re-engineering, to infer large networks in parallel, guaranteeing quality output. The framework is tested on 15 inference methods (not limited to) employing in silico benchmarks and real-world large expression matrices, followed by qualitative and speedup assessment. The framework does not compromise the quality of the base serial inference method. We rank the candidate methods and use the top-performing method to infer an Alzheimer’s Disease (AD) affected network from large expression profiles of a triple transgenic mouse model consisting of 45,101 genes. The resultant network is further explored to obtain hub genes that emerge functionally related to the disease. We partition the network into 41 modules and conduct pathway enrichment analysis, revealing that a good number of participating genes are collectively responsible for several brain disorders, including AD. Finally, we extract the interactions of a few known AD genes and observe that they are periphery genes connected to the network's hub genes. Availability: The R implementation of the framework is downloadable from https://github.com/Netralab/GenericParallelFramework.

Funder

Department of Science and Technology

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3