BioRED: a rich biomedical relation extraction dataset

Author:

Luo Ling1ORCID,Lai Po-Ting1,Wei Chih-Hsuan1,Arighi Cecilia N2,Lu Zhiyong1

Affiliation:

1. National Center for Biotechnology Information (NCBI), National Library of Medicine (NLM), National Institutes of Health (NIH) , Bethesda, MD 20894, USA

2. University of Delaware , Newark, DE 19716, USA

Abstract

AbstractAutomated relation extraction (RE) from biomedical literature is critical for many downstream text mining applications in both research and real-world settings. However, most existing benchmarking datasets for biomedical RE only focus on relations of a single type (e.g. protein–protein interactions) at the sentence level, greatly limiting the development of RE systems in biomedicine. In this work, we first review commonly used named entity recognition (NER) and RE datasets. Then, we present a first-of-its-kind biomedical relation extraction dataset (BioRED) with multiple entity types (e.g. gene/protein, disease, chemical) and relation pairs (e.g. gene–disease; chemical–chemical) at the document level, on a set of 600 PubMed abstracts. Furthermore, we label each relation as describing either a novel finding or previously known background knowledge, enabling automated algorithms to differentiate between novel and background information. We assess the utility of BioRED by benchmarking several existing state-of-the-art methods, including Bidirectional Encoder Representations from Transformers (BERT)-based models, on the NER and RE tasks. Our results show that while existing approaches can reach high performance on the NER task (F-score of 89.3%), there is much room for improvement for the RE task, especially when extracting novel relations (F-score of 47.7%). Our experiments also demonstrate that such a rich dataset can successfully facilitate the development of more accurate, efficient and robust RE systems for biomedicine.Availability: The BioRED dataset and annotation guidelines are freely available at https://ftp.ncbi.nlm.nih.gov/pub/lu/BioRED/.

Funder

National Institutes of Health

National Library of Medicine

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 59 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3