Pathway integration and annotation: building a puzzle with non-matching pieces and no reference picture

Author:

Agapito Giuseppe12,Pastrello Chiara3,Niu Yun3,Jurisica Igor3456

Affiliation:

1. Department of Law, Economics and Social Sciences, University Magna Græcia of Catanzaro , Italy

2. Data Analytic Research Center, University Magna Græcia of Catanzaro , Italy

3. Osteoarthritis Research Program, Division of Orthopaedics, Schroeder Arthritis Institute, University Health Network , Toronto, Canada

4. Departments of Medical Biophysics and Computer Science Canada, University of Toronto , Toronto, Canada

5. Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute , Toronto, Canada

6. Institute of Neuroimmunology, Slovak Academy of Sciences , Bratislava, Slovakia

Abstract

Abstract Biological pathways are a broadly used formalism for representing and interpreting the cascade of biochemical reactions underlying cellular and biological mechanisms. Pathway representation provides an ontological link among biomolecules such as RNA, DNA, small molecules, proteins, protein complexes, hormones and genes. Frequently, pathway annotations are used to identify mechanisms linked to genes within affected biological contexts. This important role and the simplicity and elegance in representing complex interactions led to an explosion of pathway representations and databases. Unfortunately, the lack of overlap across databases results in inconsistent enrichment analysis results, unless databases are integrated. However, due to absence of consensus, guidelines or gold standards in pathway definition and representation, integration of data across pathway databases is not straightforward. Despite multiple attempts to provide consolidated pathways, highly related, redundant, poorly overlapping or ambiguous pathways continue to render pathways analysis inconsistent and hard to interpret. Ontology-based integration will promote unbiased, comprehensive yet streamlined analysis of experiments, and will reduce the number of enriched pathways when performing pathway enrichment analysis. Moreover, appropriate and consolidated pathways provide better training data for pathway prediction algorithms. In this manuscript, we describe the current methods for pathway consolidation, their strengths and pitfalls, and highlight directions for future improvements to this research area.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference38 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3