Adaptive risk-aware sharable and individual subspace learning for cancer survival analysis with multi-modality data

Author:

Zhao Zhangxin1,Feng Qianjin1,Zhang Yu2,Ning Zhenyuan1

Affiliation:

1. School of Biomedical Engineering at Southern Medical University , Guangdong, China

2. School of Biomedical Engineering, Southern Medical University , Guangdong, China

Abstract

Abstract Biomedical multi-modality data (also named multi-omics data) refer to data that span different types and derive from multiple sources in clinical practices (e.g. gene sequences, proteomics and histopathological images), which can provide comprehensive perspectives for cancers and generally improve the performance of survival models. However, the performance improvement of multi-modality survival models may be hindered by two key issues as follows: (1) how to learn and fuse modality-sharable and modality-individual representations from multi-modality data; (2) how to explore the potential risk-aware characteristics in each risk subgroup, which is beneficial to risk stratification and prognosis evaluation. Additionally, learning-based survival models generally refer to numerous hyper-parameters, which requires time-consuming parameter setting and might result in a suboptimal solution. In this paper, we propose an adaptive risk-aware sharable and individual subspace learning method for cancer survival analysis. The proposed method jointly learns sharable and individual subspaces from multi-modality data, whereas two auxiliary terms (i.e. intra-modality complementarity and inter-modality incoherence) are developed to preserve the complementary and distinctive properties of each modality. Moreover, it equips with a grouping co-expression constraint for obtaining risk-aware representation and preserving local consistency. Furthermore, an adaptive-weighted strategy is employed to efficiently estimate crucial parameters during the training stage. Experimental results on three public datasets demonstrate the superiority of our proposed model.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3