Topological ranks reveal functional knowledge encoded in biological networks: a comparative analysis

Author:

Bonomo Mariella1,Giancarlo Raffaele2,Greco Daniele2,Rombo Simona E2

Affiliation:

1. Department of Engineering, University of Palermo, Palermo, 90121, Italy, Palermo

2. Department of Mathematics and Computer Science, University of Palermo, Palermo, 90121, Italy, Palermo

Abstract

Abstract Motivation Biological networks topology yields important insights into biological function, occurrence of diseases and drug design. In the last few years, different types of topological measures have been introduced and applied to infer the biological relevance of network components/interactions, according to their position within the network structure. Although comparisons of such measures have been previously proposed, to what extent the topology per se may lead to the extraction of novel biological knowledge has never been critically examined nor formalized in the literature. Results We present a comparative analysis of nine outstanding topological measures, based on compact views obtained from the rank they induce on a given input biological network. The goal is to understand their ability in correctly positioning nodes/edges in the rank, according to the functional knowledge implicitly encoded in biological networks. To this aim, both internal and external (gold standard) validation criteria are taken into account, and six networks involving three different organisms (yeast, worm and human) are included in the comparison. The results show that a distinct handful of best-performing measures can be identified for each of the considered organisms, independently from the reference gold standard. Availability Input files and code for the computation of the considered topological measures and K-haus distance are available at https://gitlab.com/MaryBonomo/ranking. Contact simona.rombo@unipa.it Supplementary information Supplementary data are available at Briefings in Bioinformatics online.

Funder

Multicriteria Data Structures and Algorithms: from compressed to learned indexes, and beyond

MISE-PON AMABILE

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3