RLBind: a deep learning method to predict RNA–ligand binding sites

Author:

Wang Kaili1,Zhou Renyi1,Wu Yifan1,Li Min1ORCID

Affiliation:

1. School of Computer Science and Engineering, Central South University , Changsha 410083 , China

Abstract

Abstract Identification of RNA–small molecule binding sites plays an essential role in RNA-targeted drug discovery and development. These small molecules are expected to be leading compounds to guide the development of new types of RNA-targeted therapeutics compared with regular therapeutics targeting proteins. RNAs can provide many potential drug targets with diverse structures and functions. However, up to now, only a few methods have been proposed. Predicting RNA–small molecule binding sites still remains a big challenge. New computational model is required to better extract the features and predict RNA–small molecule binding sites more accurately. In this paper, a deep learning model, RLBind, was proposed to predict RNA–small molecule binding sites from sequence-dependent and structure-dependent properties by combining global RNA sequence channel and local neighbor nucleotides channel. To our best knowledge, this research was the first to develop a convolutional neural network for RNA–small molecule binding sites prediction. Furthermore, RLBind also can be used as a potential tool when the RNA experimental tertiary structure is not available. The experimental results show that RLBind outperforms other state-of-the-art methods in predicting binding sites. Therefore, our study demonstrates that the combination of global information for full-length sequences and local information for limited local neighbor nucleotides in RNAs can improve the model’s predictive performance for binding sites prediction. All datasets and resource codes are available at https://github.com/KailiWang1/RLBind.

Funder

National Natural Science Foundation of China

Hunan Provincial Science and Technology Program

Science and Technology Innovation Program of Hunan Province

High Performance Computing Center of Central South University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference46 articles.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3