Differentially expressed genes prediction by multiple self-attention on epigenetics data

Author:

Huang Zimo12,Wang Jun2,Yan Zhongmin1,Guo Maozu3

Affiliation:

1. School of Software, Shandong University, Jinan 250101, China

2. Joint SDU-NTU Centre for Artificial Intelligence Research, Shandong University, Jinan 250101, China

3. College of Electrical and Information Engineering, Beijing University of Civil Engineering and Architecture, Beijing 100044, China

Abstract

Abstract Predicting differentially expressed genes (DEGs) from epigenetics signal data is the key to understand how epigenetics controls cell functional heterogeneity by gene regulation. This knowledge can help developing ‘epigenetics drugs’ for complex diseases like cancers. Most of existing machine learning-based methods suffer defects in prediction accuracy, interpretability or training speed. To address these problems, in this paper, we propose a Multiple Self-Attention model for predicting DEGs on Epigenetic data (Epi-MSA). Epi-MSA first uses convolutional neural networks for neighborhood bins information embedding, and then employs multiple self-attention encoders on different input epigenetics factors data to learn which locations of genes are important for predicting DEGs. Next it trains a soft attention module to pick out which epigenetics factors are significant. The attention mechanism makes the model interpretable, and the pure matrix operation of self-attention enables the model to be parallel calculated and speeds up the training. Experiments on datasets from the Roadmap Epigenome Project and BluePrint Data Analysis Portal (BDAP) show that the performance of Epi-MSA is better than existing competitive methods, and Epi-MSA also has a smaller standard deviation, which shows that Epi-MSA is effective and stable. In addition, Epi-MSA has a good interpretability, this is confirmed by referring its attention weight matrix with existing biological knowledge.

Funder

Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference49 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3