From multi-omics data to the cancer druggable gene discovery: a novel machine learning-based approach

Author:

Yang Hai1,Gan Lipeng1,Chen Rui2,Li Dongdong1,Zhang Jing1,Wang Zhe1

Affiliation:

1. East China University of Science and Technology Department of Computer Science and Engineering, , 200237 Shanghai, PR China

2. Vanderbilt University Department of Molecular Physiology and Biophysics, , Nashville, TN, USA

Abstract

Abstract The development of targeted drugs allows precision medicine in cancer treatment and optimal targeted therapies. Accurate identification of cancer druggable genes helps strengthen the understanding of targeted cancer therapy and promotes precise cancer treatment. However, rare cancer-druggable genes have been found due to the multi-omics data’s diversity and complexity. This study proposes deep forest for cancer druggable genes discovery (DF-CAGE), a novel machine learning-based method for cancer-druggable gene discovery. DF-CAGE integrated the somatic mutations, copy number variants, DNA methylation and RNA-Seq data across ˜10 000 TCGA profiles to identify the landscape of the cancer-druggable genes. We found that DF-CAGE discovers the commonalities of currently known cancer-druggable genes from the perspective of multi-omics data and achieved excellent performance on OncoKB, Target and Drugbank data sets. Among the ˜20 000 protein-coding genes, DF-CAGE pinpointed 465 potential cancer-druggable genes. We found that the candidate cancer druggable genes (CDG) are clinically meaningful and divided the CDG into known, reliable and potential gene sets. Finally, we analyzed the omics data’s contribution to identifying druggable genes. We found that DF-CAGE reports druggable genes mainly based on the copy number variations (CNVs) data, the gene rearrangements and the mutation rates in the population. These findings may enlighten the future study and development of new drugs.

Funder

Natural Science Foundation of China

Shanghai Science and Technology Program

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference46 articles.

1. Mapping genomic and epigenomic evolution in cancer ecosystems;Ushijima;Science,2021

2. Interpretation of cancer mutations using a multiscale map of protein systems;Zheng;Science,2021

3. Lessons from the cancer genome;Garraway;Cell,2013

4. Genomic and epigenomic alterations in cancer;Chakravarthi;Am J Pathol,2016

5. Interactive visual analysis of drug–target interaction networks using drug target profiler, with applications to precision medicine and drug repurposing;Tanoli;Brief Bioinform,2020

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3