IHGC-GAN: influence hypergraph convolutional generative adversarial network for risk prediction of late mild cognitive impairment based on imaging genetic data

Author:

Bi Xia-an1ORCID,Li Lou2,Wang Zizheng2,Wang Yu2,Luo Xun1,Xu Luyun3

Affiliation:

1. Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, and the College of Information Science and Engineering in Hunan Normal University, Changsha 410081, P.R. China

2. Department of Computing, School of Information Science and Engineering, Hunan Normal University, Changsha, China

3. College of Business, Hunan Normal University, Changsha 410081, P.R. China

Abstract

Abstract Predicting disease progression in the initial stage to implement early intervention and treatment can effectively prevent the further deterioration of the condition. Traditional methods for medical data analysis usually fail to perform well because of their incapability for mining the correlation pattern of pathogenies. Therefore, many calculation methods have been excavated from the field of deep learning. In this study, we propose a novel method of influence hypergraph convolutional generative adversarial network (IHGC-GAN) for disease risk prediction. First, a hypergraph is constructed with genes and brain regions as nodes. Then, an influence transmission model is built to portray the associations between nodes and the transmission rule of disease information. Third, an IHGC-GAN method is constructed based on this model. This method innovatively combines the graph convolutional network (GCN) and GAN. The GCN is used as the generator in GAN to spread and update the lesion information of nodes in the brain region-gene hypergraph. Finally, the prediction accuracy of the method is improved by the mutual competition and repeated iteration between generator and discriminator. This method can not only capture the evolutionary pattern from early mild cognitive impairment (EMCI) to late MCI (LMCI) but also extract the pathogenic factors and predict the deterioration risk from EMCI to LMCI. The results on the two datasets indicate that the IHGC-GAN method has better prediction performance than the advanced methods in a variety of indicators.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Hunan Province, China

Key Scientific Research Projects of Department of Education of Hunan Province

Key Laboratory of Data Science and Intelligence Education

Ministry of Education

National Key Research and Development Program of China

Hunan Provincial Science and Technology Project Foundation

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3