HDIContact: a novel predictor of residue–residue contacts on hetero-dimer interfaces via sequential information and transfer learning strategy

Author:

Zhang Wei1,Meng Qiaozhen1,Wang Jianxin2,Guo Fei2

Affiliation:

1. School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University , Tianjin , China

2. School of Computer Science and Engineering, Central South University , Changsha 410083 , China

Abstract

Abstract Proteins maintain the functional order of cell in life by interacting with other proteins. Determination of protein complex structural information gives biological insights for the research of diseases and drugs. Recently, a breakthrough has been made in protein monomer structure prediction. However, due to the limited number of the known protein structure and homologous sequences of complexes, the prediction of residue–residue contacts on hetero-dimer interfaces is still a challenge. In this study, we have developed a deep learning framework for inferring inter-protein residue contacts from sequential information, called HDIContact. We utilized transfer learning strategy to produce Multiple Sequence Alignment (MSA) two-dimensional (2D) embedding based on patterns of concatenated MSA, which could reduce the influence of noise on MSA caused by mismatched sequences or less homology. For MSA 2D embedding, HDIContact took advantage of Bi-directional Long Short-Term Memory (BiLSTM) with two-channel to capture 2D context of residue pairs. Our comprehensive assessment on the Escherichia coli (E. coli) test dataset showed that HDIContact outperformed other state-of-the-art methods, with top precision of 65.96%, the Area Under the Receiver Operating Characteristic curve (AUROC) of 83.08% and the Area Under the Precision Recall curve (AUPR) of 25.02%. In addition, we analyzed the potential of HDIContact for human–virus protein–protein complexes, by achieving top five precision of 80% on O75475-P04584 related to Human Immunodeficiency Virus. All experiments indicated that our method was a valuable technical tool for predicting inter-protein residue contacts, which would be helpful for understanding protein–protein interaction mechanisms.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference57 articles.

1. Defining bioinformatics and structural bioinformatics;Altman;Structural Bioinformatics,2003

2. Structural bioinformatics in drug discovery;Fauman;Methods Biochem Anal,2003

3. The structural analysis of protein–protein interactions by NMR spectroscopy;O’Connell;Proteomics,2009

4. A glimpse of structural biology through X-ray crystallography;Shi;Cell,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3