Affiliation:
1. Sun Yat-sen University Cancer Center State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, , Guangzhou 510060 , China
2. The University of Hong Kong Department of Computer Science, , Hong Kong 999077 , China
Abstract
Abstract
Membrane-based cells are the fundamental structural and functional units of organisms, while evidences demonstrate that liquid–liquid phase separation (LLPS) is associated with the formation of membraneless organelles, such as P-bodies, nucleoli and stress granules. Many studies have been undertaken to explore the functions of protein phase separation (PS), but these studies lacked an effective tool to identify the sequence segments that critical for LLPS. In this study, we presented a novel software called dSCOPE (http://dscope.omicsbio.info) to predict the PS-driving regions. To develop the predictor, we curated experimentally identified sequence segments that can drive LLPS from published literature. Then sliding sequence window based physiological, biochemical, structural and coding features were integrated by random forest algorithm to perform prediction. Through rigorous evaluation, dSCOPE was demonstrated to achieve satisfactory performance. Furthermore, large-scale analysis of human proteome based on dSCOPE showed that the predicted PS-driving regions enriched various protein post-translational modifications and cancer mutations, and the proteins which contain predicted PS-driving regions enriched critical cellular signaling pathways. Taken together, dSCOPE precisely predicted the protein sequence segments critical for LLPS, with various helpful information visualized in the webserver to facilitate LLPS-related research.
Funder
Guangzhou Science and Technology Program key projects
Tip-Top Scientific and Technical Innovative Youth Talents of Guangdong Special Support Program
Program for Guangdong Introducing Innovative and Entrepreneurial Teams
Natural Science Foundation of China
Publisher
Oxford University Press (OUP)
Subject
Molecular Biology,Information Systems
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献