BiTSC 2: Bayesian inference of tumor clonal tree by joint analysis of single-cell SNV and CNA data

Author:

Chen Ziwei123,Gong Fuzhou23,Wan Lin23,Ma Liang13

Affiliation:

1. Institute of Zoology, Chinese Academy of Sciences, Beichen West Road, 100101, Beijing, Country

2. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Zhongguancun East Road, 100190, Beijing, China

3. School of Mathematical Sciences, University of Chinese Academy of Sciences, Yuquan Road, 100049, Beijing, China

Abstract

Abstract The rapid development of single-cell DNA sequencing (scDNA-seq) technology has greatly enhanced the resolution of tumor cell profiling, providing an unprecedented perspective in characterizing intra-tumoral heterogeneity and understanding tumor progression and metastasis. However, prominent algorithms for constructing tumor phylogeny based on scDNA-seq data usually only take single nucleotide variations (SNVs) as markers, failing to consider the effect caused by copy number alterations (CNAs). Here, we propose BiTSC$^2$, Bayesian inference of Tumor clonal Tree by joint analysis of Single-Cell SNV and CNA data. BiTSC$^2$ takes raw reads from scDNA-seq as input, accounts for the overlapping of CNA and SNV, models allelic dropout rate, sequencing errors and missing rate, as well as assigns single cells into subclones. By applying Markov Chain Monte Carlo sampling, BiTSC$^2$ can simultaneously estimate the subclonal scCNA and scSNV genotype matrices, subclonal assignments and tumor subclonal evolutionary tree. In comparison with existing methods on synthetic and real tumor data, BiTSC$^2$ shows high accuracy in genotype recovery, subclonal assignment and tree reconstruction. BiTSC$^2$ also performs robustly in dealing with scDNA-seq data with low sequencing depth and variant missing rate. BiTSC$^2$ software is available at https://github.com/ucasdp/BiTSC2.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

National Center for Mathematics and Interdisciplinary Sciences of Chinese Academy of Sciences

Key Laboratory of Systems and Control of Chinese Academy of Sciences

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3