BISC: accurate inference of transcriptional bursting kinetics from single-cell transcriptomic data

Author:

Luo Xizhi1ORCID,Qin Fei1ORCID,Xiao Feifei2,Cai Guoshuai3

Affiliation:

1. Department of Epidemiology and Biostatistics, Arnold School of Public Health, University of South Carolina , Columbia, SC 29208 , USA

2. Department of Biostatistics, University of Florida , Gainesville, FL 32603 , USA

3. Department of Environmental Health Science, Arnold School of Public Health, University of South Carolina , Columbia, SC 29208 , USA

Abstract

Abstract Gene expression in mammalian cells is inherently stochastic and mRNAs are synthesized in discrete bursts. Single-cell transcriptomics provides an unprecedented opportunity to explore the transcriptome-wide kinetics of transcriptional bursting. However, current analysis methods provide limited accuracy in bursting inference due to substantial noise inherent to single-cell transcriptomic data. In this study, we developed BISC, a Bayesian method for inferring bursting parameters from single cell transcriptomic data. Based on a beta-gamma-Poisson model, BISC modeled the mean–variance dependency to achieve accurate estimation of bursting parameters from noisy data. Evaluation based on both simulation and real intron sequential RNA fluorescence in situ hybridization data showed improved accuracy and reliability of BISC over existing methods, especially for genes with low expression values. Further application of BISC found bursting frequency but not bursting size was strongly associated with gene expression regulation. Moreover, our analysis provided new mechanistic insights into the functional role of enhancer and superenhancer by modulating both bursting frequency and size. BISC also formulated a downstream framework to identify differential bursting (in frequency and size separately) genes in samples under different conditions. Applying to multiple datasets (a mouse embryonic cell and fibroblast dataset, a human immune cell dataset and a human pancreatic cell dataset), BISC identified known cell-type signature genes that were missed by differential expression analysis, providing additional insights in understanding the cell-specific stochastic gene transcription. Applying to datasets of human lung and colon cancers, BISC successfully detected tumor signature genes based on alterations in bursting kinetics, which illustrates its value in understanding disease development regarding transcriptional bursting. Collectively, BISC provides a new tool for accurately inferring bursting kinetics and detecting differential bursting genes. This study also produced new insights in the role of transcriptional bursting in regulating gene expression, cell identity and tumor progression.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3