Improving therapeutic synergy score predictions with adverse effects using multi-task heterogeneous network learning

Author:

Yue Yang1,Liu Yongxuan2,Hao Luoying1,Lei Huangshu3,He Shan4ORCID

Affiliation:

1. School of Computer Science from the University of Birmingham , UK

2. State Key Laboratory of Agricultural Microbiology from Huazhong Agricultural University , China

3. YaoPharma Co., Ltd

4. School of Computer Science, the University of Birmingham , UK

Abstract

Abstract Drug combinations could trigger pharmacological therapeutic effects (TEs) and adverse effects (AEs). Many computational methods have been developed to predict TEs, e.g. the therapeutic synergy scores of anti-cancer drug combinations, or AEs from drug–drug interactions. However, most of the methods treated the AEs and TEs predictions as two separate tasks, ignoring the potential mechanistic commonalities shared between them. Based on previous clinical observations, we hypothesized that by learning the shared mechanistic commonalities between AEs and TEs, we could learn the underlying MoAs (mechanisms of actions) and ultimately improve the accuracy of TE predictions. To test our hypothesis, we formulated the TE prediction problem as a multi-task heterogeneous network learning problem that performed TE and AE learning tasks simultaneously. To solve this problem, we proposed Muthene (multi-task heterogeneous network embedding) and evaluated it on our collected drug–drug interaction dataset with both TEs and AEs indications. Our experimental results showed that, by including the AE prediction as an auxiliary task, Muthene generated more accurate TE predictions than standard single-task learning methods, which supports our hypothesis. Using a drug pair Vincristine—Dasatinib as a case study, we demonstrated that our method not only provides a novel way of TE predictions but also helps us gain a deeper understanding of the MoAs of drug combinations.

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3