Incomplete time-series gene expression in integrative study for islet autoimmunity prediction

Author:

Tanvir Ahmed Khandakar1,Cheng Sze2,Li Qian3,Yong Jeongsik2,Zhang Wei1

Affiliation:

1. University of Central Florida Department of Computer Science, , Orlando, FL 32816 , USA

2. University of Minnesota Twin Cities Department of Biochemistry, Molecular Biology and Biophysics, , Minneapolis, MN 55455 , USA

3. St. Jude Children’s Research Hospital Department of Biostatistics, , Memphis, TN 38105 , USA

Abstract

Abstract Type 1 diabetes (T1D) outcome prediction plays a vital role in identifying novel risk factors, ensuring early patient care and designing cohort studies. TEDDY is a longitudinal cohort study that collects a vast amount of multi-omics and clinical data from its participants to explore the progression and markers of T1D. However, missing data in the omics profiles make the outcome prediction a difficult task. TEDDY collected time series gene expression for less than 6% of enrolled participants. Additionally, for the participants whose gene expressions are collected, 79% time steps are missing. This study introduces an advanced bioinformatics framework for gene expression imputation and islet autoimmunity (IA) prediction. The imputation model generates synthetic data for participants with partially or entirely missing gene expression. The prediction model integrates the synthetic gene expression with other risk factors to achieve better predictive performance. Comprehensive experiments on TEDDY datasets show that: (1) Our pipeline can effectively integrate synthetic gene expression with family history, HLA genotype and SNPs to better predict IA status at 2 years (sensitivity 0.622, AUC 0.715) compared with the individual datasets and state-of-the-art results in the literature (AUC 0.682). (2) The synthetic gene expression contains predictive signals as strong as the true gene expression, reducing reliance on expensive and long-term longitudinal data collection. (3) Time series gene expression is crucial to the proposed improvement and shows significantly better predictive ability than cross-sectional gene expression. (4) Our pipeline is robust to limited data availability. Availability: Code is available at https://github.com/compbiolabucf/TEDDY

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Reference52 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3