CRISPRCasStack: a stacking strategy-based ensemble learning framework for accurate identification of Cas proteins

Author:

Zhang Tianjiao1ORCID,Jia Yuran1ORCID,Li Hongfei1ORCID,Xu Dali1,Zhou Jie1ORCID,Wang Guohua1

Affiliation:

1. College of Information and Computer Engineering, Northeast Forestry University , Harbin, 150040 , China

Abstract

AbstractCRISPR-Cas system is an adaptive immune system widely found in most bacteria and archaea to defend against exogenous gene invasion. One of the most critical steps in the study of exploring and classifying novel CRISPR-Cas systems and their functional diversity is the identification of Cas proteins in CRISPR-Cas systems. The discovery of novel Cas proteins has also laid the foundation for technologies such as CRISPR-Cas-based gene editing and gene therapy. Currently, accurate and efficient screening of Cas proteins from metagenomic sequences and proteomic sequences remains a challenge. For Cas proteins with low sequence conservation, existing tools for Cas protein identification based on homology cannot guarantee identification accuracy and efficiency. In this paper, we have developed a novel stacking-based ensemble learning framework for Cas protein identification, called CRISPRCasStack. In particular, we applied the SHAP (SHapley Additive exPlanations) method to analyze the features used in CRISPRCasStack. Sufficient experimental validation and independent testing have demonstrated that CRISPRCasStack can address the accuracy deficiencies and inefficiencies of the existing state-of-the-art tools. We also provide a toolkit to accurately identify and analyze potential Cas proteins, Cas operons, CRISPR arrays and CRISPR-Cas locus in prokaryotic sequences. The CRISPRCasStack toolkit is available at https://github.com/yrjia1015/CRISPRCasStack.

Funder

Northeast Forestry University

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3