MAMnet: detecting and genotyping deletions and insertions based on long reads and a deep learning approach

Author:

Ding Hongyu1,Luo Junwei1ORCID

Affiliation:

1. College of Computer Science and Technology, Henan Polytechnic University , Jiaozuo, 454003, China

Abstract

Abstract Structural variations (SVs) play important roles in human genetic diversity; deletions and insertions are two common types of SVs that have been proven to be associated with genetic diseases. Hence, accurately detecting and genotyping SVs is significant for disease research. Despite the fact that long-read sequencing technologies have improved the field of SV detection and genotyping, there are still some challenges that prevent satisfactory results from being obtained. In this paper, we propose MAMnet, a fast and scalable SV detection and genotyping method based on long reads and a combination of convolutional neural network and long short-term network. MAMnet uses a deep neural network to implement sensitive SV detection with a novel prediction strategy. On real long-read sequencing datasets, we demonstrate that MAMnet outperforms Sniffles, SVIM, cuteSV and PBSV in terms of their F1 scores while achieving better scaling performance. The source code is available from https://github.com/micahvista/MAMnet.

Funder

National Natural Science Foundation of China

Henan Provincial Department of Science and Technology Research Project

Young Elite Teachers in Henan Province

Doctor Foundation of Henan Polytechnic University

Publisher

Oxford University Press (OUP)

Subject

Molecular Biology,Information Systems

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3