Gene regulatory network study of rheumatoid arthritis in single-cell chromatin landscapes of peripheral blood mononuclear cells

Author:

Zhang Cantong1,Hong Xiaoping1,Yu Haiyan1,Xu Huixuan1,Qiu Xiaofen1,Cai Wanxia1,Hocher Berthold2,Dai Weier3,Tang Donge1,Liu Dongzhou1,Dai Yong1

Affiliation:

1. The Second Clinical Medical College, Jinan University (Shenzhen People’s Hospital) , Shenzhen, Guangdong, China

2. Fifth Department of Medicine (Nephrology/Endocrinology/Rheumatology), University Medical Centre Mannheim , University of Heidelberg, Germany

3. College of Natural Science, University of Texas at Austin , Austin, TX, USA

Abstract

ABSTRACT Objectives Assays for transposase-accessible chromatin with single-cell sequencing (scATAC-seq) contribute to the progress in epigenetic studies. The purpose of our project was to discover the transcription factors (TFs) that were involved in the pathogenesis of rheumatoid arthritis (RA) at a single-cell resolution using epigenetic technology. Methods Peripheral blood mononuclear cells of seven RA patients and seven natural controls were extracted nuclei suspensions for library construction. Subsequently, scATAC-seq was performed to generate a high-resolution map of active regulatory DNA for bioinformatics analysis. Results We obtained 22 accessible chromatin patterns. Then, 10 key TFs were involved in RA pathogenesis by regulating the activity of mitogen-activated protein kinase. Consequently, two genes (PTPRC and SPAG9) regulated by 10 key TFs were found, which may be associated with RA disease pathogenesis, and these TFs were obviously enriched in RA patients (P < .05, fold change value > 1.2). With further quantitative polymerase chain reaction validation on PTPRC and SPAG9 in monocytes, we found differential expression of these two genes, which were regulated by eight TFs [ZNF384, HNF1B, DMRTA2, MEF2A, NFE2L1, CREB3L4 (var. 2), FOSL2::JUNB (var. 2), and MEF2B], showing highly accessible binding sites in RA patients. Conclusions These findings demonstrate the value of using scATAC-seq to reveal transcriptional regulatory variation in RA-derived peripheral blood mononuclear cells, providing insights into therapy from an epigenetic perspective.

Funder

National Science FoundationNational Science Foundation

Development Programme of Guangdong Province

Sanming Project of Medicine in Shenzhen

Shenzhen Key Medical Discipline Construc-tion Fund

Guangxi Key Laboratory of Metabolic Diseases Research

Publisher

Oxford University Press (OUP)

Subject

Rheumatology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3