Drug–nutrient interactions: discovering prescription drug inhibitors of the thiamine transporter ThTR-2 (SLC19A3)

Author:

Vora Bianca1,Green Elizabeth A E1,Khuri Natalia2,Ballgren Frida3,Sirota Marina4,Giacomini Kathleen M1

Affiliation:

1. Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA

2. Department of Bioengineering, Stanford University, Stanford, CA, USA

3. Department of Pharmaceutical Biosciences, Faculty of Pharmacy, Uppsala University, Uppsala, Sweden

4. Bakar Computational Health Sciences Institute, University of California, San Francisco, San Francisco, CA, USA

Abstract

ABSTRACT Background Transporter-mediated drug–nutrient interactions have the potential to cause serious adverse events. However, unlike drug–drug interactions, these drug–nutrient interactions receive little attention during drug development. The clinical importance of drug–nutrient interactions was highlighted when a phase III clinical trial was terminated due to severe adverse events resulting from potent inhibition of thiamine transporter 2 (ThTR-2; SLC19A3). Objective In this study, we tested the hypothesis that therapeutic drugs inhibit the intestinal thiamine transporter ThTR-2, which may lead to thiamine deficiency. Methods For this exploration, we took a multifaceted approach, starting with a high-throughput in vitro primary screen to identify inhibitors, building in silico models to characterize inhibitors, and leveraging real-world data from electronic health records to begin to understand the clinical relevance of these inhibitors. Results Our high-throughput screen of 1360 compounds, including many clinically used drugs, identified 146 potential inhibitors at 200 μM. Inhibition kinetics were determined for 28 drugs with half-maximal inhibitory concentration (IC50) values ranging from 1.03 μM to >1 mM. Several oral drugs, including metformin, were predicted to have intestinal concentrations that may result in ThTR-2–mediated drug–nutrient interactions. Complementary analysis using electronic health records suggested that thiamine laboratory values are reduced in individuals receiving prescription drugs found to significantly inhibit ThTR-2, particularly in vulnerable populations (e.g., individuals with alcoholism). Conclusions Our comprehensive analysis of prescription drugs suggests that several marketed drugs inhibit ThTR-2, which may contribute to thiamine deficiency, especially in at-risk populations.

Funder

Thiamine Transporter

National Institutes of Health

National Institute of General Medical Sciences

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3