Inorganic nitrate and nitrite supplementation fails to improve skeletal muscle mitochondrial efficiency in mice and humans

Author:

Ntessalen Maria1,Procter Nathan E K2,Schwarz Konstantin1,Loudon Brodie L2,Minnion Magdalena3,Fernandez Bernadette O3ORCID,Vassiliou Vassilios S2,Vauzour David2,Madhani Melanie4ORCID,Constantin‐Teodosiu Dumitru5,Horowitz John D6,Feelisch Martin3ORCID,Dawson Dana7,Crichton Paul G2,Frenneaux Michael P12

Affiliation:

1. Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom

2. Norwich Medical School, University of East Anglia, Norwich, United Kingdom

3. Clinical & Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom

4. Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, United Kingdom

5. Medical Research Council/Arthritis Research UK Centre for Musculoskeletal Ageing Research, National Institute for Health Research Nottingham Biomedical Research Centre, School of Life Sciences, Nottingham University Medical School, Nottingham, United Kingdom

6. Department of Cardiology, The Queen Elizabeth Hospital, University of Adelaide, Adelaide, South Australia, Australia

7. Department of Cardiology, School of Medicine & Dentistry, University of Aberdeen, Aberdeen, United Kingdom

Abstract

Abstract Background Inorganic nitrate, abundant in leafy green vegetables and beetroot, is thought to have protective health benefits. Adherence to a Mediterranean diet reduces the incidence and severity of coronary artery disease, whereas supplementation with nitrate can improve submaximal exercise performance. Once ingested, oral commensal bacteria may reduce nitrate to nitrite, which may subsequently be reduced to nitric oxide during conditions of hypoxia and in the presence of “nitrite reductases” such as heme- and molybdenum-containing enzymes. Objective We aimed to explore the putative effects of inorganic nitrate and nitrite on mitochondrial function in skeletal muscle. Methods Mice were subjected to a nitrate/nitrite-depleted diet for 2 wk, then supplemented with sodium nitrate, sodium nitrite, or sodium chloride (1 g/L) in drinking water ad libitum for 7 d before killing. Skeletal muscle mitochondrial function and expression of uncoupling protein (UCP) 3, ADP/ATP carrier protein (AAC) 1 and AAC2, and pyruvate dehydrogenase (PDH) were assessed by respirometry and Western blotting. Studies were also undertaken in human skeletal muscle biopsies from a cohort of coronary artery bypass graft patients treated with either sodium nitrite (30-min infusion of 10 μmol/min) or vehicle [0.9% (wt:vol) saline] 24 h before surgery. Results Neither sodium nitrate nor sodium nitrite supplementation altered mitochondrial coupling efficiency in murine skeletal muscle, and expression of UCP3, AAC1, or AAC2, and PDH phosphorylation status did not differ between the nitrite and saline groups. Similar results were observed in human samples. Conclusions Sodium nitrite failed to improve mitochondrial metabolic efficiency, rendering this mechanism implausible for the purported exercise benefits of dietary nitrate supplementation. This trial was registered at clinicaltrials.gov as NCT04001283.

Funder

Medical Research Council

Publisher

Oxford University Press (OUP)

Subject

Nutrition and Dietetics,Medicine (miscellaneous)

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3