The podocyte as a direct target of glucocorticoids in nephrotic syndrome

Author:

Broek Martijn van den12,Smeets Bart1,Schreuder Michiel F2ORCID,Jansen Jitske12

Affiliation:

1. Department of Pathology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands

2. Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Amalia Children’s Hospital, Nijmegen, The Netherlands

Abstract

Abstract Nephrotic syndrome (NS) is characterized by massive proteinuria; podocyte loss or altered function is a central event in its pathophysiology. Treatment with glucocorticoids is the mainstay of therapy, however, many patients experience one or multiple relapses and prolonged use may be associated with severe adverse effects. Recently the beneficial effects of glucocorticoids have been attributed to a direct effect on podocytes in addition to the well-known immunosuppressive effects. The molecular effects of glucocorticoid action have been studied using animal and cell models of NS. This review provides a comprehensive overview of different molecular mediators regulated by glucocorticoids, including an overview of the model systems that were used to study them. Glucocorticoids are described to stimulate podocyte recovery by restoring pro-survival signalling of slit diaphragm–related proteins and limiting inflammatory responses. Of special interest is the effect of glucocorticoids on stabilizing the cytoskeleton of podocytes, since these effects are also described for other therapeutic agents used in NS, such as cyclosporin. Current models provide much insight but do not fully recapitulate the human condition since the pathophysiology underlying NS is poorly understood. New and promising models include the glomerulus-on-a-chip and kidney organoids, which have the potential to be further developed into functional NS models in the future.

Funder

Dutch Kidney Foundation

Netherlands Organization for Scientific Research

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3