Regression of diabetic nephropathy by treatment with empagliflozin in BTBR ob/ob mice

Author:

Hudkins Kelly L1,Li Xianwu1,Holland Alexander L1,Swaminathan Shreya1,Alpers Charles E1

Affiliation:

1. Department of Pathology, University of Washington, Seattle WA, USA

Abstract

ABSTRACT Background The SGLT2 inhibitor empagliflozin lowers blood glucose via reduced tubular reabsorption of filtered glucose and is an important new therapy for diabetic nephropathy (DN). This study tested whether treatment with empagliflozin would ameliorate proteinuria and the pathologic alterations of DN including podocyte number and integrity in the leptin deficient BTBR ob/ob mouse model of DN. Methods Study cohorts included wild type BTBR mice, untreated diabetic BTBR ob/ob mice, and mice treated with empagliflozin for six weeks after development of established DN at 18 weeks of age. Results Hyperglycemia, proteinuria, serum creatinine, accumulation of mesangial matrix and the extent of mesangiolysis were reversed with empagliflozin treatment. Treatment with empagliflozin resulted in increased podocyte number and podocyte density, improvement in the degree of podocyte foot process effacement and parietal epithelial cell activation. SGLT2 inhibition reduced renal oxidative stress, measured by urinary excretion of markers of RNA/DNA damage and in situ demonstration of decreased carbonyl oxidation. There was no discernable difference in accumulations of advanced glycation endproducts by immunohistochemistry. Conclusion The structural improvements seen in BTBR ob/ob mice treated with empagliflozin provide insight into potential long term benefits for humans with DN, for whom there is no comparable biopsy information to identify structural changes effected by SGLT2 inhibition. The findings suggest SGLT2 inhibition may ameliorate diabetic nephropathy through glucose lowering-dependent and -independent mechanisms that lead to podocyte restoration and delay or reversal of the disease progress.

Publisher

Oxford University Press (OUP)

Subject

Transplantation,Nephrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3