Affiliation:
1. Department of Radiology, Memorial Sloan Kettering Cancer Center , New York, NY , USA
2. Department of Biostatistics and Epidemiology, Memorial Sloan Kettering Cancer Center , New York, NY , USA
Abstract
Abstract
Objective
To assess performance of an artificial intelligence (AI) decision support software in assessing and recommending biopsy of triple-negative breast cancers (TNBCs) on US.
Methods
Retrospective institutional review board–approved review identified patients diagnosed with TNBC after US-guided biopsy between 2009 and 2019. Artificial intelligence output for TNBCs on diagnostic US included lesion features (shape, orientation) and likelihood of malignancy category (benign, probably benign, suspicious, and probably malignant). Artificial intelligence true positive was defined as suspicious or probably malignant and AI false negative (FN) as benign or probably benign. Artificial intelligence and radiologist lesion feature agreement, AI and radiologist sensitivity and FN rate (FNR), and features associated with AI FNs were determined using Wilcoxon rank-sum test, Fisher’s exact test, chi-square test of independence, and kappa statistics.
Results
The study included 332 patients with 345 TNBCs. Artificial intelligence and radiologists demonstrated moderate agreement for lesion shape and orientation (k = 0.48 and k = 0.47, each P <.001). On the set of examinations using 6 earlier diagnostic US, radiologists recommended biopsy of 339/345 lesions (sensitivity 98.3%, FNR 1.7%), and AI recommended biopsy of 333/345 lesions (sensitivity 96.5%, FNR 3.5%), including 6/6 radiologist FNs. On the set of examinations using immediate prebiopsy diagnostic US, AI recommended biopsy of 331/345 lesions (sensitivity 95.9%, FNR 4.1%). Artificial intelligence FNs were more frequently oval (q < 0.001), parallel (q < 0.001), circumscribed (q = 0.04), and complex cystic and solid (q = 0.006).
Conclusion
Artificial intelligence accurately recommended biopsies for 96% to 97% of TNBCs on US and may assist radiologists in classifying these lesions, which often demonstrate benign sonographic features.
Publisher
Oxford University Press (OUP)
Subject
Radiology, Nuclear Medicine and imaging,Radiological and Ultrasound Technology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献