Asynchronous calibration of a CT scanner for bone mineral density estimation: sources of error and correction

Author:

Dudle Alice1ORCID,Ith Michael2,Egli Rainer2,Heverhagen Johannes2,Gugler Yvan1ORCID,Wapp Christina1,Frauchiger Daniela A13,Lippuner Kurt3,Jackowski Christian4,Zysset Philippe1ORCID

Affiliation:

1. ARTORG Center for Biomedical Engineering Research, University of Bern , sitem-insel, Freiburgstrasse 3, Bern 3010, Switzerland

2. Inselspital, University of Bern Department of Diagnostic, Interventional and Pediatric Radiology, , Freiburgstrasse 10, Bern 3010, Switzerland

3. Inselspital, Bern University Hospital, University of Bern Department of Osteoporosis, , Freiburgstrsasse 4, Bern 3010, Switzerland

4. University of Bern Institute of Forensic Medicine, , Murtenstrasse 28, Bern 3008, Switzerland

Abstract

Abstract The estimation of BMD with CT scans requires a calibration method, usually based on a phantom. In asynchronous calibration, the phantom is scanned separately from the patient. A standardized acquisition protocol must be used to avoid variations between patient and phantom. However, variations can still be induced, for example, by temporal fluctuations or patient characteristics. Based on the further use of 739 forensic and 111 clinical CT scans, this study uses the proximal femur BMD value (“total hip”) to assess asynchronous calibration accuracy, using in-scan calibration as ground truth. It identifies the parameters affecting the calibration accuracy and quantifies their impact. For time interval and table height, the impact was measured by calibrating the CT scan twice (once using the phantom scan with closest acquisition parameters and once using a phantom scan with standard values) and comparing the calibration accuracy. For other parameters such as body weight, the impact was measured by computing a linear regression between parameter values and calibration accuracy. Finally, this study proposes correction methods to reduce the effect of these parameters and improve the calibration accuracy. The BMD error of the asynchronous calibration, using the phantom scan with the closest acquisition parameters, was −1.2 ± 1.7% for the forensic and − 1.6 ± 3.5% for the clinical dataset. Among the parameters studied, time interval and body weight were identified as the main sources of error for asynchronous calibration, followed by table height and reconstruction kernel. Based on these results, a correction method was proposed to improve the calibration accuracy.

Funder

Sinergia grant from the Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3