Chromatin accessibility profiling reveals that human fibroblasts respond to mechanical stimulation in a cell-specific manner

Author:

Logan Niall J1,Broda Krystyna L1,Pantelireis Nikolaos1,Williams Greg2,Higgins Claire A1

Affiliation:

1. Department of Bioengineering, Imperial College London , London, SW7 2AZ , United Kingdom

2. Farjo Hair Institute , Manchester, M3 3EJ , United Kingdom

Abstract

Abstract Fibroblasts in the skin are highly heterogeneous, both in vivo and in vitro. One difference between follicular (dermal papilla fibroblasts [DP]) and interfollicular fibroblasts (papillary fibroblasts [PFi]) in vitro is their ability to differentiate in response to osteogenic media (OM), or mechanical stimulation. Here, we asked whether differences in the ability of DP and PFi to respond to differentiation stimuli are due to differences in chromatin accessibility. We performed chromatin accessibility and transcriptional profiling of DP and PFi in human skin, which arise from a common progenitor during development, yet display distinct characteristics in adult tissue and in vitro. We found that cells cultured in growth media had unique chromatin accessibility profiles; however, these profiles control similar functional networks. Upon introduction of a chemical perturbation (OM) to promote differentiation, we observed a divergence not only in the accessible chromatin signatures but also in the functional networks controlled by these signatures. The biggest divergence between DP and PFi was observed when we applied 2 perturbations to cells: growth in OM and mechanical stimulation (a shock wave [OMSW]). DP readily differentiate into bone in OMSW conditions, while PFi lack differentiation capability in vitro. In the DP we found a number of uniquely accessible promoters that controlled osteogenic interaction networks associated with bone and differentiation functions. Using ATAC-seq and RNA-seq we found that the combination of 2 stimuli (OMSW) could result in significant changes in chromatin accessibility associated with osteogenic differentiation, but only within the DP (capable of osteogenic differentiation). De novo motif analysis identified enrichment of motifs bound by the TEA domain (TEAD) family of transcription factors, and inter-cell comparisons (UpSet analysis) displayed large groups of genes to be unique to single cell types and conditions. Our results suggest that these 2 stimuli (OMSW) elicit cell-specific responses by modifying chromatin accessibility of osteogenic-related gene promoters.

Funder

Medical Research Council

Publisher

Oxford University Press (OUP)

Reference56 articles.

1. Epigenetic switch from repressive to permissive chromatin in response to cold stress;Park;Proc Natl Acad Sci USA,2018

2. Chromatin accessibility: a window into the genome;Tsompana;Epigenetics Chromatin,2014

3. Temporal layering of signaling effectors drives chromatin remodeling during hair follicle stem cell lineage progression;Adam;Cell Stem Cell,2018

4. Genome-wide temporal profiling of transcriptome and open-chromatin of early cardiomyocyte differentiation derived from hiPSCs and hESCs;Liu;Circ Res,2017

5. Mapping the chromatin landscape and Blimp1 transcriptional targets that regulate trophoblast differentiation;Nelson;Sci Rep UK,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3