Preclinical development of EXT608, an investigational parathyroid hormone derivative with extended half-life for the treatment of hypoparathyroidism

Author:

Hall Daniel B1ORCID,Kostyla Caroline H12,Hales Laura M1,Soliman Tarik M1

Affiliation:

1. Extend Biosciences, Inc. , Newton, MA 02458 , United States

2. Present address: Atalanta Therapeutics , 51 Sleeper St. Boston, MA 02210 , United States

Abstract

Abstract Hypoparathyroidism, a deficiency of parathyroid hormone (PTH), results in hypocalcemia, hyperphosphatemia, and hypercalciuria. The disease is poorly controlled by calcium and vitamin D supplements or native PTH(1-84) replacement therapy. A version of PTH is being developed using D-VITylation technology, whereby vitamin D is conjugated to a therapeutic peptide, which confers a long plasma half-life by virtue of binding to the abundant vitamin D binding protein (DBP). D-VITylation of PTH caused no reduction in activity at the PTHR1 receptor, and resulted in a plasma elimination half-life of 7–15 h in rats and 24–32 h in cynomolgus monkeys. Analysis of steady-state pharmacokinetics as a function of dose showed flat profiles with smaller peak:trough ratios at low doses, indicative of slower subcutaneous absorption. In thyroparathyroidectomized (TPTx) rats, PTH(1-34)-vitamin D conjugates restored serum calcium and phosphate levels into the normal range over the 24 h dosing period, and increased bone turnover markers and reduced bone mineral density. Urinary calcium was initially elevated, but normalized by the end of treatment on day 27. In healthy monkeys, a single dose of PTH(1-34)-vitamin D conjugates elevated serum calcium levels above the normal range for a period of 24–48 h while simultaneously reducing urinary calcium. Therefore, the lead compound, EXT608, is a promising candidate as a therapeutic that can truly mimic the endogenous activity of PTH and warrants further study in patients with hypoparathyroidism.

Funder

National Institutes of Health

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3