The temporal viscoelastic model of flexural isostasy for estimating the elastic thickness of the lithosphere

Author:

Eshagh Mehdi1,Tenzer Robert2ORCID

Affiliation:

1. Department of Engineering Science, University West, Gustava Melins Gata 2, 46186 Trollhättan, Sweden

2. Department of Land Surveying and Geo-Informatics, Hong Kong Polytechnic University, South Wing, Block Z, Phase 8, 181 Chatham Road South, Hung Hom, Kowloon, Hong Kong

Abstract

SUMMARY The (effective) elastic thickness of the lithosphere defines the strength of the lithosphere with respect to a load on it. Since the lithosphere is buoyant on a viscous mantle, its behaviour with respect to a load is not fully elastic, but rather viscoelastic. Fennoscandia is a well-known area in the world where the lithosphere has not yet reached its isostatic equilibrium due to the ongoing uplift after the last glacial period at the end of the Pleistocene. To accommodate for this changing property of the lithosphere in time, we present the flexural model of isostasy that accommodates temporal variations of the lithospheric flexure. We then define a theoretical model for computing the elastic thickness of the lithosphere based on combining the flexural and gravimetric models of isostasy. We demonstrate that differences between the elastic and viscoelastic models are not that significant in Fennoscandia. This finding is explained by a relatively young age of the glacial load when compared to the Maxwell relaxation time. The approximation of an elastic shell is then permissible in order to determine the lithospheric structure and its properties. In this way, the elastic thickness can be estimated based on combining gravimetric and flexural models of isostasy. This approach takes into consideration the topographic and ocean-floor (bathymetric) relief as well as the lithospheric structural composition and the post-glacial rebound. In addition, rheological properties of the lithosphere are taken into consideration by means of involving the Young modulus and the Poisson ratio in the model, both parameters determined from seismic velocities. The results reveal that despite changes in the Moho geometry attributed to the glacial isostatic adjustment in Fennoscandia are typically less than 1 km, the corresponding changes in the lithospheric elastic thickness could reach or even exceed ±50 km. The sensitivity analysis confirms that even small changes in input parameters could significantly modify the result (i.e. the elastic thickness estimates). The reason is that the elastic thickness estimation is an inverse problem. Consequently, small changes in input parameters can lead to large changes in the elastic thickness estimates. These findings indicate that a robust estimation of the elastic thickness by our method is possible if comprehensive information about structural and rheological properties of the lithosphere as input parameters are known with a relatively high accuracy. Otherwise, even small uncertainties in these parameters could result in large errors in the elastic thickness estimates.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference81 articles.

1. A comparison of the estimated effective elastic thickness of the lithosphere using terrestrial and satellite-derived data in Iran;Abbaszadeh;Acta Geophys.,2013

2. On the computations of the effect of the attraction of the mountain masses as disturbing the apparent astronomical latitude of stations in geodetic surveys;Airy;Trans. R. Soc. London,1855

3. Isostatic processes and intracontinental orogenesis;Artemjev;J. Geodyn.,1991

4. Variations in elastic thickness in the Canadian shield;Audet;Earth planet. Sci. Lett.,2004

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3