Pre-conditioned BFGS-based uncertainty quantification in elastic full-waveform inversion

Author:

Liu Qiancheng1ORCID,Beller Stephen1,Lei Wenjie1,Peter Daniel2,Tromp Jeroen13ORCID

Affiliation:

1. Department of Geosciences, Princeton University, Princeton, NJ 08544, USA

2. Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia

3. Program in Applied and Computational Mathematics, Princeton University, Princeton, NJ 08544, USA

Abstract

SUMMARY Full-waveform inversion has become an essential technique for mapping geophysical subsurface structures. However, proper uncertainty quantification is often lacking in current applications. In theory, uncertainty quantification is related to the inverse Hessian (or the posterior covariance matrix). Even for common geophysical inverse problems its calculation is beyond the computational and storage capacities of the largest high-performance computing systems. In this study, we amend the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm to perform uncertainty quantification for large-scale applications. For seismic inverse problems, the limited-memory BFGS (L-BFGS) method prevails as the most efficient quasi-Newton method. We aim to augment it further to obtain an approximate inverse Hessian for uncertainty quantification in FWI. To facilitate retrieval of the inverse Hessian, we combine BFGS (essentially a full-history L-BFGS) with randomized singular value decomposition to determine a low-rank approximation of the inverse Hessian. Setting the rank number equal to the number of iterations makes this solution efficient and memory-affordable even for large-scale problems. Furthermore, based on the Gauss–Newton method, we formulate different initial, diagonal Hessian matrices as pre-conditioners for the inverse scheme and compare their performances in elastic FWI applications. We highlight our approach with the elastic Marmousi benchmark model, demonstrating the applicability of pre-conditioned BFGS for large-scale FWI and uncertainty quantification.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3