Effects of topography and basins on seismic wave amplification: the Northern Chile coastal cliff and intramountainous basins

Author:

García-Pérez Tiaren1,Ferreira Ana M G23,Yáñez Gonzalo14,Iturrieta Pablo56,Cembrano José17

Affiliation:

1. Departamento de Ingeniería Estructural y Geotécnica, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago, 7820244, Chile

2. CERIS, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal

3. Department of Earth Sciences, Faculty of Mathematical & Physical Sciences, University College London, London WC1E 6BT, UK

4. Millenium Nucleus for Metal Tracing Along Subduction, Universidad de Chile, Santiago, Casilla 13518, Correo 21, Chile

5. Helmholtz Centre Potsdam, GFZ German Research Centre for Geoscience, Potsdam, Telegrafenberg, 14473, Germany

6. Institute of Geoscience, University of Potsdam, Karl-Liebknecht-Strasse 24-25, 14414 Potsdam, Germany

7. Andean Geothermal Center of Excellence (CEGA, FONDAP-CONICYT), Santiago, Casilla 13518, Correo 21, Chile

Abstract

SUMMARY During earthquakes, structural damage is often related to soil conditions. Following the 2014 April 1 Mw 8.1 Iquique earthquake in Northern Chile, damage to infrastructure was reported in the cities of Iquique and Alto Hospicio. In this study, we investigate the causes of site amplification in the region by numerically analysing the effects of topography and basins on observed waveforms in the frequency range 0.1–3.5 Hz using the spectral element method. We show that topography produces changes in the amplitude of the seismic waves (amplification factors up to 2.2 in the frequency range 0.1–3.5 Hz) recorded by stations located in steep areas such as the ca. 1-km-high coastal scarp, a remarkable geomorphological feature that runs north–south, that is parallel to the coast and the trench. The modelling also shows that secondary waves—probably related to reflections from the coastal scarp—propagate inland and offshore, augmenting the duration of the ground motion and the energy of the waveforms by up to a factor of three. Additionally, we find that, as expected, basins have a considerable effect on ground motion amplification at stations located within basins and in the surrounding areas. This can be attributed to the generation of multiple reflected waves in the basins, which increase both the amplitude and the duration of the ground motion, with an amplification factor of up to 3.9 for frequencies between 1.0 and 2.0 Hz. Comparisons between real and synthetic seismic waveforms accounting for the effects of topography and of basins show a good agreement in the frequency range between 0.1 and 0.5 Hz. However, for higher frequencies, the fit progressively deteriorates, especially for stations located in or near to areas of steep topography, basin areas, or sites with superficial soft sediments. The poor data misfit at high frequencies is most likely due to the effects of shallow, small-scale 3-D velocity heterogeneity, which is not yet resolved in seismic images of our study region.

Funder

NERC

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3