Lithospheric transdimensional ambient-noise tomography of W-Europe: implications for crustal-scale geometry of the W-Alps

Author:

Nouibat A1ORCID,Stehly L1,Paul A1,Schwartz S1,Bodin T2ORCID,Dumont T1,Rolland Y13,Brossier R1,

Affiliation:

1. CNRS, IRD, UGE, Université Grenoble Alpes, Université Savoie Mont Blanc, ISTerre, 38000 Grenoble, France

2. UCBL, CNRS, LGL-TPE, Université Lyon, 69622 Villeurbanne, France

3. CNRS, Université Savoie Mont Blanc, UMR 5204, EDYTEM, 73370 Le Bourget-du-Lac, France

Abstract

SUMMARY A full understanding of the dynamics of mountain ranges such as the Alps requires the integration of available geological and geophysical knowledge into a lithospheric-scale 3-D geological model. As a first stage in the construction of this geo-model, we derive a new 3-D shear wave velocity model of the Alpine region, with a spatial resolution of a few tens of kilometres, making it possible to compare with geological maps. We use four years of continuous vertical-component seismic noise records to compute noise correlations between more than 950 permanent broad-band stations complemented by ∼600 temporary stations from the AlpArray sea-land seismic network and the Cifalps and EASI linear arrays. A specific pre-processing is applied to records of ocean–bottom seismometers in the Liguro-Provençal basin to clean them from instrumental and oceanic noises. We first perform a 2-D transdimensional inversion of the traveltimes of Rayleigh waves to compute group-velocity maps from 4 to $150\, \mathrm{ s}$. The data noise level treated as an unknown parameter is determined with a Hierarchical Bayes method. A Fast Marching Eikonal solver is used to update ray path geometries during the inversion. We use next the group-velocity maps and their uncertainties to derive a 3-D probabilistic Vs model. The probability distributions of Vs at depth and the probability of presence of an interface are estimated at each location by exploring a set of 130 million synthetic four-layer 1-D Vs models. The obtained probabilistic model is refined using a linearized inversion. Throughout the inversion for Vs, we include the water column where necessary. Our Vs model highlights strong along-strike changes of the lithospheric structure, particularly in the subduction complex between the European and Adriatic plates. In the South-Western Alps, our model confirms the existence of a low-velocity structure at $50-80\, \mathrm{ km}$ depth in the continuation of the European continental crust beneath the subduction wedge. This deep low-velocity anomaly progressively disappears towards the North-Western and Central Alps. The European crust includes lower crustal low-velocity zones and a Moho jump of $\sim \, 8-12$ km beneath the western boundary of the External Crystalline Massifs of the North-Western Alps. The striking fit between our Vs model and the receiver function migrated depth section along the Cifalps profile documents the reliability of the Vs model. In light of this reliability and with the aim to building a 3-D geological model, we re-examine the geological structures highlighted along the Cifalps profile.

Funder

Agence Nationale de la Recherche

National Natural Science Foundation of China

European Union

USC

SCEC

IPGP

Auvergne-Rhône-Alpes region

Labex

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3