Stress–strain characterization of seismic source fields using moment measures of mechanism complexity

Author:

Jordan Thomas H1ORCID,Juarez Alan1ORCID

Affiliation:

1. Southern California Earthquake Center, University of Southern California, Los Angeles, CA 90089–0740, USA

Abstract

SUMMARY Earthquake ruptures and seismic sequences can be very complex, involving slip in various directions on surfaces of variable orientation. How is this geometrical complexity in seismic energy release, here called mechanism complexity, governed by tectonic stress? We address this question using a probabilistic model for the distribution of double couples that is consistent with three assumptions commonly used in regional stress inversions: the tectonic stress is constant, slip vectors are aligned with the maximum shear traction in the plane of slip, and higher shear traction promotes more seismic energy release. We characterize the moment-tensor field of a stress-aligned source process in terms of an ordered set of principal-stress directions, a stress shape factor R, and a strain-sensitivity parameter $\kappa $. The latter governs the dependence of the seismic moment density on the shear-traction magnitude and therefore parametrizes the seismic strain response to the driving stress. These stress–strain characterization (SSC) parameters can be determined from moment measures of mechanism complexity observed in large earthquakes and seismic sequences. The moment measures considered here are the ratio of the Aki moment to the total seismic moment and the five fractions of the total-moment defined by linear mappings of the moment-tensor field onto an orthonormal basis of five deviatoric mechanisms. We construct this basis to be stress-oriented by choosing its leading member to be the centroid moment tensor (CMT) mechanism and three others representing orthogonal rotations of the CMT mechanism. From the projections of the stress-aligned field onto this stress-oriented basis, we derive explicit expressions for the expected values of the moment-fraction integrals as functions of R and $\kappa $. We apply the SSC methodology to a 39-yr focal mechanism catalogue of the San Jacinto Fault (SJF) zone and to realizations from the Graves–Pitarka stochastic rupture model. The SJF data are consistent with the SSC model, and the recovered parameters, $R = {\rm{ }}0.45 \pm 0.050$ and $\kappa = {\rm{ }}5.7 \pm 1.75$, indicate moderate mechanism complexity. The parameters from the Graves–Pitarka realizations, $R = {\rm{\ }}0.49 \pm 0.005,{\rm{\ \ }}\kappa = {\rm{\ }}9.5 \pm 0.375,$ imply lower mechanism complexity than the SJF catalogue, and their moment measures show inconsistencies with the SSC model that can be explained by differences in the modelling assumptions.

Funder

Southern California Earthquake Center

National Science Foundation

U.S. Geological Survey

W. M. Keck Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference99 articles.

1. Variations of stress parameters in the Southern California plate boundary around the south central Transverse Ranges;Abolfathian;J. geophys. Res.,2020

2. The statistical analysis of geochemical compositions;Aitchison;Math. Geol.,1984

3. Logistic-normal distributions: some properties and uses;Aitchison;Biometrika,1982

4. Generation and propagation of G waves from the Niigata Earthquake of June 16, 1964: part 1. A statistical analysis;Aki;Bull. Earthq. Res. Inst. Univ. Tokyo,1966

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3