Contribution of crystal orientation and grain boundary compliance to low shear velocity observed near base of polar ice sheets

Author:

Sayers Colin M1ORCID

Affiliation:

1. Department of Earth and Atmospheric Sciences, University of Houston, Houston, TX 77204, USA

Abstract

SUMMARY Seismic shear wave velocity (S-velocity) shows a decrease towards the base of ice sheets in Antarctica and Greenland that is not accompanied by a corresponding decrease in compressional velocity (P-velocity). This decrease has been interpreted as arising from liquid water below the melting point (pre-melt water) at grain boundaries, but the lack of a corresponding decrease in P-velocity has not been explained. Representing grain boundaries as displacement discontinuities allows the change in P- and S-velocities to be written as functions of the normal and shear compliance of the grain boundaries. This allows the normal-to-shear compliance ratio of the grain boundaries to be constrained, and seismic anisotropy resulting from a partial orientation of grain boundaries to be estimated. This approach demonstrates that the observed reduction in S-velocity with no significant decrease in P-velocity near the base of ice sheets in Antarctica and Greenland can be explained by pre-melt water at small aperture grain boundaries. Such water may enable sliding along the grain boundaries and so may enhance creep of ice near the base of ice sheets. If stress state is anisotropic the aperture of water-containing grain boundaries may vary with azimuth, with the most open grain boundaries oriented with strikes perpendicular to least compressive stress. Microcracks and fractures may be treated also as displacement discontinuities and, together with oriented grain boundaries, may contribute to shear wave splitting as observed in West Antarctica in a fast-moving ice stream.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference63 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Elastic properties of unconsolidated sandstones of interest for carbon storage;Geophysical Prospecting;2023-11-06

2. Elastic wave propagation in anisotropic polycrystals: inferring physical properties of glacier ice;Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences;2022-12

3. Elastic wave velocities in a granitic geothermal reservoir;Geophysical Prospecting;2022-10-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3