Full waveform inversion based on the non-parametric estimate of the probability distribution of the residuals

Author:

Carvalho P T C1ORCID,da Silva S L E F2ORCID,Duarte E F2,Brossier R3ORCID,Corso G14,de Araújo J M12

Affiliation:

1. Postgraduate Program in Science and Petroleum Engineering, Federal University of Rio Grande do Norte, Natal, RN, Brazil

2. Department of Theoretical and Experimental Physics, Federal University of Rio Grande do Norte, Natal, RN, Brazil

3. ISTerre, University Grenoble Alpes, Grenoble, France

4. Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, RN, Brazil

Abstract

SUMMARY In an attempt to overcome the difficulties of the full waveform inversion (FWI), several alternative objective functions have been proposed over the last few years. Many of them are based on the assumption that the residuals (differences between modelled and observed seismic data) follow specific probability distributions when, in fact, the true probability distribution is unknown. This leads FWI to converge to an incorrect probability distribution if the assumed probability distribution is different from the real one and, consequently it may lead the FWI to achieve biased models of the subsurface. In this work, we propose an objective function which does not force the residuals to follow a specific probability distribution. Instead, we propose to use the non-parametric kernel density estimation technique (KDE) (which imposes the least possible assumptions about the residuals) to explore the probability distribution that may be more suitable. As evidenced by the results obtained in a synthetic model and in a typical P-wave velocity model of the Brazilian pre-salt fields, the proposed FWI reveals a greater potential to overcome more adverse situations (such as cycle-skipping) and also a lower sensitivity to noise in the observed data than conventional L2- and L1-norm objective functions and thus making it possible to obtain more accurate models of the subsurface. This greater potential is also illustrated by the smoother and less sinuous shape of the proposed objective function with fewer local minima compared with the conventional objective functions.

Funder

UFRN

ANP

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3