Co-seismic and post-seismic deformation for the 1995 Colima–Jalisco and 2003 Tecomán thrust earthquakes, Mexico subduction zone, from modelling of GPS data

Author:

Cosenza-Muralles B12ORCID,DeMets C1ORCID,Márquez-Azúa B3,Sánchez O4,Stock J5,Cabral-Cano E4,McCaffrey R6

Affiliation:

1. Department of Geoscience, University of Wisconsin-Madison, Madison, WI 53706, USA

2. Instituto de Investigación en Ciencias Físicas y Matemáticas, Escuela de Ciencias Físicas y Matemáticas, Universidad de San Carlos de Guatemala, 01012 Ciudad de Guatemala, Guatemala

3. Departamento de Estudios Socio Urbanos, Universidad de Guadalajara, 44100 Guadalajara, Jalisco, México

4. Instituto de Geofísica, Universidad Nacional Autónoma de México, Ciudad Universitaria, México CDMX 04510, México

5. Caltech Seismological Laboratory, California Institute of Technology, Pasadena, CA 91125, USA

6. Department of Geology, Portland State University, Portland, OR 97201, USA

Abstract

SUMMARY We invert ∼25 yr of campaign and continuous Global Positioning System daily positions at 62 sites in southwestern Mexico to estimate co-seismic and post-seismic afterslip solutions for the 1995 Mw = 8.0 Colima–Jalisco and the 2003 Mw = 7.5 Tecomán earthquakes, and the long-term velocity of each GPS site. Estimates of the viscoelastic effects of both earthquakes from a 3-D model with an elastic crust and subducting slab, and linear Maxwell viscoelastic mantle are used to correct the GPS position time-series prior to our time-dependent inversions. The preferred model, which optimizes the fit to data from several years of rapid post-seismic deformation after the larger 1995 earthquake, has a mantle Maxwell time of 15 yr (viscosity of 2 × 1019 Pa s), although upper-mantle viscosities as low as 5 × 1018 Pa s cannot be excluded. Our geodetic slip solutions for both earthquakes agree well with previous estimates derived from seismic data or via static co-seismic offset modelling. The afterslip solutions for both earthquakes suggest that most afterslip coincided with the rupture areas or occurred farther downdip and had cumulative moments similar to or larger than the co-seismic moments. Afterslip thus appears to relieve significant stress along the Rivera plate subduction interface, including the area of the interface between a region of deep non-volcanic tremor and the shallower seismogenic zone. We compare the locations of the seismogenic zone, afterslip and tremor in our study area to those of the neighbouring Guerrero and Oaxaca segments of the Mexico subduction zone. Our newly derived interseismic GPS site velocities, the first for western Mexico that are corrected for the co-seismic and post-seismic effects of the 1995 and 2003 earthquakes, are essential for future estimates of the interseismic subduction interface locking and hence the associated seismic hazard.

Funder

NSF

University of Wisconsin-Madison

National Aeronautics and Space Administration

CONACYT

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3