Treatment of ocean tide background model errors in the context of GRACE/GRACE-FO data processing

Author:

Abrykosov Petro1,Sulzbach Roman23,Pail Roland1ORCID,Dobslaw Henryk2ORCID,Thomas Maik23

Affiliation:

1. Chair of Astronomical and Physical Geodesy, Technical University of Munich (TUM), Arcisstraße 21, 80333 München, Germany

2. Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences, Section 1.3, Earth System Modelling, Telegrafenberg, 14473 Potsdam, Germany

3. Institute of Meteorology, Freie Universität Berlin (FUB), Carl-Heinrich-Becker-Weg 6-10, 12165 Berlin, Germany

Abstract

SUMMARY Ocean tide (OT) background models (BMs) used for a priori de-aliasing of GRACE/GRACE-FO observations feature distinct spatial uncertainties (primarily in coastal proximity and in latitudes above ±60°), and therefore pose one of the largest contributors to the overall retrieval error. The retrieval performance can be expected to increase if this underlying spatial error distribution is stochastically modelled and incorporated into the data processing chain. In this contribution, we derive realistic error variance-covariance matrices (VCM) based on a set of five state-of-the-art OT models. The additional value of using such VCMs is assessed through numerical closed-loop simulations, where they are rigorously propagated from model to observation level. Further, different approximations of the resulting VCM of observations are assumed, that is full, block-diagonal and diagonal, in order to evaluate the trade-off between computational efficiency and accuracy. It is asserted that correctly weighting the OT BM error can improve the gravity retrieval performance by up to three orders of magnitude, provided no further error contributors are considered. In comparison, the overall gain in retrieval performance is reduced to 75 per cent once instrument noise is taken into account. Here, it is shown that simultaneously modelling the OT BM and the instrument errors is critical, as each effect induces different types of correlations between observations, and exclusively considering covariance information based on the sensor noise may degrade the solution. We further demonstrate that the additional benefit of incorporating OT error VCMs is primarily limited by the de-aliasing performance for non-tidal mass variations of atmosphere (A) and oceans (O). This emphasizes the necessity of best-possible AO-de-aliasing (e.g. through optimized processing techniques and/or improved BMs) in order to optimally exploit the OT BM weighting.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3