The effects of non-Newtonian rheology in the upper mantle on relative sea level change and geodetic observables induced by glacial isostatic adjustment process

Author:

Kang Kaixuan1ORCID,Zhong Shijie1,Geruo A2,Mao Wei1

Affiliation:

1. Department of Physics, University of Colorado at Boulder, Boulder, CO 80302, USA

2. Department of Earth System Science, University of California, Irvine, CA 92697, USA

Abstract

SUMMARY Studies of glacial isostatic adjustment (GIA) provide important constraints on the Earth's mantle viscosity. Most GIA models assume Newtonian viscosity through the mantle, but laboratory experimental studies of rock deformation, observational studies of seismic anisotropy, and modelling studies of mantle dynamics show that in the upper mantle non-Newtonian viscosity may be important. This study explores the non-Newtonian effects on the GIA induced variations in mantle stress and viscosity and on surface observables including vertical displacement, relative sea level (RSL) and gravity change. The recently updated and fully benchmarked software package CitcomSVE is used for GIA simulations. We adopt the ICE-6G ice deglaciation history, VM5a lower mantle and lithospheric viscosities, and a composite rheology that combines Newtonian and non-Newtonian viscosities for the upper mantle. Our results show that: (1) The mantle stress beneath glaciated regions increases significantly during deglaciation, leading to regionally reduced upper mantle viscosity by more than an order of magnitude. Such effects can be rather localized at the periphery of glaciated regions. However, non-Newtonian effects on far-field mantle viscosity are negligibly small. GIA induced stress is also significant in the lithosphere (∼30 MPa) and lower mantle (∼2 MPa). (2) The predicted RSL changes from non-Newtonian models display distinct features in comparison with the Newtonian model, including more rapid sea level falls associated with the rapid deglaciation at ∼14 000 yr ago followed by a more gradual sea level variation for sites near the centres of formerly glaciated regions, and an additional phase of sea level falls for the last ∼8000 yr for sites at the ice margins. Similar time-dependence associated with the deglaciation is also seen for rate of vertical displacement, suggesting a relatively slow present-day rates of vertical displacement and gravity change. These features can be explained by the non-Newtonian effects associated with a loading event which manifest a fast relaxation stage followed by a relative slow relaxation stage. Our results may provide GIA diagnoses for distinguishing non-Newtonian and Newtonian rheology.

Funder

NASA

ESI

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3