Heterogeneous material properties—as inferred from seismic attenuation—influenced multiple fault rupture and ductile creep of the Kaikoura Mw 7.8 earthquake, New Zealand

Author:

Eberhart-Phillips Donna12ORCID,Ellis Susan3ORCID,Lanza Federica4,Bannister Stephen3

Affiliation:

1. GNS Science, Private Bag 1930, Dunedin 9054, New Zealand

2. Department of Earth and Planetary Sciences, Univ. of California Davis, Davis, CA 95616, USA

3. GNS Science, PO Box 30368, Lower Hutt 5040, New Zealand

4. Swiss Seismological Service, ETH Zürich, Sonneggstrasse 5, 8092 Zürich, Switzerland

Abstract

SUMMARY The 2016 Mw 7.8 Kaikoura, New Zealand, earthquake occurred along the eastern margin of the transition region between active subduction in the North Island and oblique collision in the South Island. To infer crustal properties, we imaged Q (1/seismic attenuation) by combining selected M > 3.5 aftershocks with data from previous Q models. For 158 distributed aftershocks, we fit spectral decay on temporary stations and all Geonet stations, providing 6194 t*p and 19 497 t*s. Considering the varied rheology and faults, we also used 2.5-D numerical models to study ductile strain development. The complex earthquake ruptured an ∼180-km-long zone of multiple faults, which involved jumping around the complicated eastern end of the Hope fault, without significant slip on the Hope fault. The Qs and Qp results show features in the upper and lower crust which correlate to the distribution and types of fault rupture. This earthquake involved numerous faults over a region of greywacke crust, where the underlying high Q Cretaceous slab is about 30-km depth. It initiated with ∼5-m slip on the Humps fault in a region of background seismicity and low Q lower crust, adjacent to the Hope fault. The central region near Kaikoura shows a high Q crustal block, which appears to have inhibited rupture; as the rupture progressed over several small faults to jump offshore of the apparently strong block. Underlying the Kaikoura greywacke crust, below 20-km depth, there is a 40-km-long region of increased Vp, Qs and gravity, which likely represents an intraplate plutonic complex emplaced into the Hikurangi Plateau, forming an elevated section which influences deformation. In the northern section, in a region with relatively uniform moderate to low Q, the earthquake evolved into the relatively continuous ∼80-km-long major rupture along the Jordan, Kekerengu and Needles faults, with ∼6–20 m dextral slip at depth and surface displacements of ∼10 m dextral and ∼2 m vertical. The northern progression of the rupture stopped when it approached an abrupt change to high Q crust across Cook Strait. At 20–30-km depth northwest of the rupture, deeper zones with low Q are consistent with regions of distributed ductile shear and creep where the observed afterslip may have occurred, where the underlying slab is 25–40 km deep. The numerical model shows that ductile deformation localizes in this area of lower crust above the relatively strong slab, connecting outer faults (Kekerengu) to inland faults (Clarence, Awatere, Wairau), and demonstrates that no subduction thrust is required under the Marlborough region.

Funder

NSF

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference92 articles.

1. Earthquake source scaling relationships from -1 to 5 ML using seismograms recorded at 2.5-km depth;Abercrombie;J. geophys. Res,1995

2. Variability of earthquake stress drop in a subduction setting, the Hikurangi Margin, New Zealand;Abercrombie;Geophys. J. Int.,2016

3. Seismic properties of Anita Bay dunite: an exploratory study of the influence of water;Aizawa;J. Petrol.,2008

4. Postseismic deformation due to the Mw 6.0 2004 Parkfield earthquake: stress-driven creep on a fault with spatially variable rate-and-state friction parameters;Barbot;J. geophys. Res.,2009

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3