Crystal rotations and alignment in spatially varying magma flows: 2-D examples of common subvolcanic flow geometries

Author:

Vachon Rémi1ORCID,Bazargan Mohsen2ORCID,Hieronymus Christoph F2,Ronchin Erika3,Almqvist Bjarne2

Affiliation:

1. Centre for Arctic Gas Hydrate, Environment and Climate, Universitetet i Tromsø, Naturfagbygget Dramsveien 201, NO-9010 Tromsø, Norway

2. Department of Earth Sciences, Uppsala Universitet, Villavägen 16, SE-75236 Uppsala, Sweden

3. Department of Earth Sciences, Sapienza University of Rome, 00185 Roma RM, Italy

Abstract

Summary Elongate inclusions immersed in a viscous fluid generally rotate at a rate that is different from the local angular velocity of the flow. Often, a net alignment of the inclusions develops, and the resulting shape preferred orientation of the particle ensemble can then be used as a strain marker that allows reconstruction of the fluid’s velocity field. Much of the previous work on the dynamics of flow-induced particle rotations has focused on spatially homogeneous flows with large-scale tectonic deformations as the main application. Recently, the theory has been extended to spatially varying flows, such as magma with embedded crystals moving through a volcanic plumbing system. Additionally, an evolution equation has been introduced for the probability density function of crystal orientations. Here, we apply this new theory to a number of simple, 2-D flow geometries commonly encountered in magmatic intrusions, such as flow from a dyke into a reservoir or from a reservoir into a dyke, flow inside an inflating or deflating reservoir, flow in a dyke with a sharp bend, and thermal convection in a magma chamber. The main purpose is to provide a guide for interpreting field observations and for setting up more complex flow models with embedded crystals. As a general rule, we find that a larger aspect ratio of the embedded crystals causes a more coherent alignment of the crystals, while it has only a minor effect on the geometry of the alignment pattern. Due to various perturbations in the crystal rotation equations that are expected in natural systems, we show that the time-periodic behaviour found in idealized systems is probably short-lived in nature, and the crystal alignment is well described by the time-averaged solution. We also confirm some earlier findings. For example, near channel walls, fluid flow often follows the bounding surface and the resulting simple shear flow causes preferred crystal orientations that are approximately parallel to the boundary. Where pure shear deformation dominates, there is a tendency for crystals to orient themselves in the direction of the greatest tensile strain rate. Where flow impinges on a boundary, for example in an inflating magma chamber or as part of a thermal convection pattern, the stretching component of pure shear aligns with the boundary, and the crystals orient themselves in that direction. In the field, this local pattern may be difficult to distinguish from a boundary-parallel simple shear flow. Pure shear also dominates along the walls of a deflating magma chamber and in places where the flow turns away from the reservoir walls, but in these locations, the preferred crystal orientation is perpendicular to the wall. Overall, we find that our calculated patterns of crystal orientations agree well with results from analogue experiments where similar geometries are available.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3