The GPS velocity field of the Aegean. New observations, contribution of the earthquakes, crustal blocks model

Author:

Briole Pierre1ORCID,Ganas Athanassios2,Elias Panagiotis3ORCID,Dimitrov Dimitar4

Affiliation:

1. UMR 8538 CNRS - École Normale Supérieure - PSL Research University, F-75005 Paris, France

2. National Observatory of Athens, Institute of Geodynamics, GR-11810 Athens, Greece

3. National Observatory of Athens, IAASARS, GR-15236 Penteli, Greece

4. Bulgarian Academy of Sciences, National Institute of Geophysics, Geodesy and Geography, BG-1113 Sofia, Bulgaria

Abstract

SUMMARY We calculate and analyse the coordinate time-series of 282 permanent GPS stations located in Greece and 47 in surrounding countries. The studied period is 2000–2020. The average GPS time-series length is 6.5 yr. The formal velocity uncertainties are rescaled to be consistent with the velocity scatters measured at 110 pairs of stations separated by less 15 km. We remove the effect of the crustal earthquakes of Mw ≥ 5.3. We quantify and model the post-seismic deformations. Two relaxation times are usually needed: one short of some weeks and one long of 1 yr or more. For the large Mw = 6.9 events of Samothraki 2014 and Methoni 2008, the post-seismic deformation equals or exceeds the coseismic one. We detect at three stations a deformation transient in May 2018 that may correspond to a slow earthquake beneath Zakynthos and northwest Peloponnese, with equivalent magnitude 5.8. The density and accuracy of the velocities make it possible to better quantify several characteristics of the deformation in the Aegean, in particular: (i) the transition from the Anatolian domain, located in the southeast, to the European domain through the western end of the North Anatolian fault; (ii) the north–south extension in the western Aegean; (iii) the east–west extension of the western Peloponnese; (iv) the clockwise rotation of the Pindos; (v) the north–south extension in central Macedonia. Large parts of the central Aegean, eastern Peloponnese and western Crete form a wide stable domain with internal deformation below 2 nstrain yr−1. We build a kinematic model comprising 10 crustal blocks corresponding to areas where the velocities present homogeneous gradients. The blocks boundaries are set to fit with known localized deformation zones, for example, the rift of Corinth, the North Anatolian fault and the Katouna fault. When the velocity steps are clear but not localized, for example, through the Peloponnese, the boundary line is arbitrary and represents the transition zone. The model fits the velocities with a root-mean-square deviation of ±0.9 mm yr−1. At the boundaries between blocks we compare the predicted and observed deformations. We find shear rates of 7.4 and 9.0 mm yr−1 along the Movri and Katouna faults, 14.9 and 8.7 mm yr−1 along the North Anatolian fault near Lemnos and near Skopelos respectively, extension of 7.6, 1.5 and 12.6 mm yr−1 across the Gulf of Patras, the Trichonis Lake and the Ambracian Gulf. The compression across western Epirus is 3.7 mm yr−1. There is a dextral transtensional movement of 4.5 mm yr−1 between the Amorgos and Astypalea islands. Only the Ionian Islands region shows evidence of coupling along the subduction interface.

Funder

Centre National de la Recherche Scientifique

National Aeronautics and Space Administration

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference108 articles.

1. Satellite laser ranging to measure crustal motion in the eastern Mediterranean area—instrumentation and network design;Aardoom;Ann. Geophys.,1984

2. ITRF2014: a new release of the International Terrestrial Reference Frame modeling nonlinear station motions;Altamimi;J. geophys. Res.,2016

3. Seismicity and associated strain of central Greece between 1890 and 1988;Ambraseys;Geophys. J. Int.,1990

4. Seismicity and strain in the gulf of Corinth (Greece) since 1694;Ambraseys;J. Earthq. Eng.,1997

5. East–west extension and Holocene normal-fault scarps in the Hellenic arc;Armijo;Geology,1992

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3