The crustal structure of the Anatolian Plate from receiver functions and implications for the uplift of the central and eastern Anatolian plateaus

Author:

Ogden C S1ORCID,Bastow I D1

Affiliation:

1. Department of Earth Science and Engineering, Imperial College, London SW7 2BP, UK

Abstract

SUMMARY Understanding the crustal structure of the Anatolian Plate has important implications for its formation and evolution, including the extent to which its high elevation is maintained isostatically. However, the numerous teleseismic receiver function studies from which Anatolian Moho depths have been obtained return results that differ by ≤21 km at some seismograph stations. To address this issue, we determine Moho depth and bulk crustal VP/VS ratio (κ) at 582 broad-band seismograph stations, including ∼100 for which H–κ results have not been reported previously. We use a modified H–κ stacking method in which a final solution is selected from a suite of up to 1000 repeat H–κ measurements, each calculated using randomly selected receiver functions and H–κ input parameters. Ten quality control criteria that variously assess the final numerical result, the receiver function data set, and the extent to which the results are clustered tightly, are used to determine station quality. By refining Moho depth constraints, including identifying 182 stations, analysed previously, where H–κ stacking yields unreliable results (particularly in Eastern Anatolia and the rapidly uplifting Taurides), our new crustal model (ANATOLIA-HK21) provides fresh insight into Anatolian crustal structure and topography. Changes in Moho depth within the Anatolian Plate occur on a shorter length-scale than has sometimes previously been assumed. For example, crustal thickness decreases abruptly from >40 km in the northern Kirsehir block to <32 km beneath the Central Anatolian Volcanic Province and Tuz Golu basin. Moho depth increases from 30–35 km on the Arabian Plate to 35–40 km across the East Anatolian Fault into Anatolia, in support of structural geological observations that Arabia–Anatolia crustal shortening was accommodated primarily on the Anatolian, not Arabian, Plate. However, there are no consistent changes in Moho depth across the North Anatolian Fault, whose development along the Intra-Pontide and İzmir-Ankara-Erzincan suture zones was more likely the result of contrasts in mantle lithospheric, not crustal, structure. While the crust thins from ∼45 km below the uplifted Eastern Anatolian Plateau to ∼25 km below lower-lying western Anatolia, Moho depth is generally correlated poorly with elevation. Residual topography calculations confirm the requirement for a mantle contribution to Anatolian Plateau uplift, with localized asthenospheric upwellings in response to slab break-off and/or lithospheric dripping/delamination example candidate driving mechanisms.

Funder

Natural Environment Research Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3